|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM351367128 |
003 |
DE-627 |
005 |
20250304072748.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202209128
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1170.xml
|
035 |
|
|
|a (DE-627)NLM351367128
|
035 |
|
|
|a (NLM)36625665
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, Hoseong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Revisiting Lithium- and Sodium-Ion Storage in Hard Carbon Anodes
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.03.2023
|
500 |
|
|
|a Date Revised 23.03.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a The galvanostatic lithiation/sodiation voltage profiles of hard carbon anodes are simple, with a sloping drop followed by a plateau. However, a precise understanding of the corresponding redox sites and storage mechanisms is still elusive, which hinders further development in commercial applications. Here, a comprehensive comparison of the lithium- and sodium-ion storage behaviors of hard carbon is conducted, yielding the following key findings: 1) the sloping voltage section is presented by the lithium-ion intercalation in the graphitic lattices of hard carbons, whereas it mainly arises from the chemisorption of sodium ions on their inner surfaces constituting closed pores, even if the graphitic lattices are unoccupied; 2) the redox sites for the plateau capacities are the same as those for the closed pores regardless of the alkali ions; 3) the sodiation plateau capacities are mostly determined by the volume of the available closed pore, whereas the lithiation plateau capacities are primarily affected by the intercalation propensity; and 4) the intercalation preference and the plateau capacity have an inverse correlation. These findings from extensive characterizations and theoretical investigations provide a relatively clear elucidation of the electrochemical footprint of hard carbon anodes in relation to the redox mechanisms and storage sites for lithium and sodium ions, thereby providing a more rational design strategy for constructing better hard carbon anodes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a alkali-ion storage mechanism
|
650 |
|
4 |
|a hard carbon anode
|
650 |
|
4 |
|a intercalation propensity
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a pore-filling mechanism
|
650 |
|
4 |
|a sodium-ion batteries
|
700 |
1 |
|
|a Hyun, Jong Chan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Do-Hoon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kwak, Jin Hwan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Jin Bae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Moon, Joon Ha
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Choi, Jaewon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lim, Hee-Dae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Seung Jae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Hyeong Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ahn, Dong June
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kang, Kisuk
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Hyoung-Joon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lim, Hyung-Kyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yun, Young Soo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 12 vom: 14. März, Seite e2209128
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:12
|g day:14
|g month:03
|g pages:e2209128
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202209128
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 12
|b 14
|c 03
|h e2209128
|