Nanocomposite Engineering of a High-Capacity Partially Ordered Cathode for Li-Ion Batteries

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 13 vom: 06. März, Seite e2208423
1. Verfasser: Lee, Eunryeol (VerfasserIn)
Weitere Verfasser: Wi, Tae-Ung, Park, Jaehyun, Park, Sang-Wook, Kim, Min-Ho, Lee, Dae-Hyung, Park, Byung-Chun, Jo, Chiho, Malik, Rahul, Lee, Jong Hoon, Shin, Tae Joo, Kang, Seok Ju, Lee, Hyun-Wook, Lee, Jinhyuk, Seo, Dong-Hwa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article DFT calculations cation-disordered cathode materials high-energy Li-ion battereis local cation order nanocomposite nature
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Understanding the local cation order in the crystal structure and its correlation with electrochemical performances has advanced the development of high-energy Mn-rich cathode materials for Li-ion batteries, notably Li- and Mn-rich layered cathodes (LMR, e.g., Li1.2 Ni0.13 Mn0.54 Co0.13 O2 ) that are considered as nanocomposite layered materials with C2/m Li2 MnO3 -type medium-range order (MRO). Moreover, the Li-transport rate in high-capacity Mn-based disordered rock-salt (DRX) cathodes (e.g., Li1.2 Mn0.4 Ti0.4 O2 ) is found to be influenced by the short-range order of cations, underlining the importance of engineering the local cation order in designing high-energy materials. Herein, the nanocomposite is revealed, with a heterogeneous nature (like MRO found in LMR) of ultrahigh-capacity partially ordered cathodes (e.g., Li1.68 Mn1.6 O3.7 F0.3 ) made of distinct domains of spinel-, DRX- and layered-like phases, contrary to conventional single-phase DRX cathodes. This multi-scale understanding of ordering informs engineering the nanocomposite material via Ti doping, altering the intra-particle characteristics to increase the content of the rock-salt phase and heterogeneity within a particle. This strategy markedly improves the reversibility of both Mn- and O-redox processes to enhance the cycling stability of the partially ordered DRX cathodes (nearly ≈30% improvement of capacity retention). This work sheds light on the importance of nanocomposite engineering to develop ultrahigh-performance, low-cost Li-ion cathode materials
Beschreibung:Date Completed 29.03.2023
Date Revised 29.03.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202208423