|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM351057331 |
003 |
DE-627 |
005 |
20231226050422.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202207673
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1170.xml
|
035 |
|
|
|a (DE-627)NLM351057331
|
035 |
|
|
|a (NLM)36594431
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wong, Jitkanya
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Triplet Fusion Upconversion for Photocuring 3D-Printed Particle-Reinforced Composite Networks
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.03.2023
|
500 |
|
|
|a Date Revised 20.03.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing. TTA-UC converts low energy red light (λmax = 660 nm) for deep penetration into higher-energy blue light to initiate free radical polymerizations within opaque objects. As proof-of-principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA-UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1-2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D-printed composite polymer networks
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D Printing
|
650 |
|
4 |
|a composites
|
650 |
|
4 |
|a direct-ink-write printing
|
650 |
|
4 |
|a hydrogels
|
650 |
|
4 |
|a photopolymerization
|
650 |
|
4 |
|a triplet-triplet annihilation upconversion
|
700 |
1 |
|
|a Wei, Shixuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meir, Rinat
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sadaba, Naroa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ballinger, Nathan A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Harmon, Elizabeth K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Altin-Yavuzarslan, Gokce
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pozzo, Lilo D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Campos, Luis M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nelson, Alshakim
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 11 vom: 03. März, Seite e2207673
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:11
|g day:03
|g month:03
|g pages:e2207673
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202207673
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 11
|b 03
|c 03
|h e2207673
|