A Highly Active, Long-Lived Oxygen Evolution Electrocatalyst Derived from Open-Framework Iridates

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 12 vom: 01. März, Seite e2208539
1. Verfasser: Yang, Lan (VerfasserIn)
Weitere Verfasser: Shi, Lei, Chen, Hui, Liang, Xiao, Tian, Boyuan, Zhang, Kexin, Zou, Yongcun, Zou, Xiaoxin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electrocatalysis iridium open framework structures oxygen evolution reaction water splitting
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
The acidic oxygen evolution reaction underpins several important electrical-to-chemical energy conversions, and this energy-intensive process relies industrially on iridium-based electrocatalysts. Here, phase-selective synthesis of metastable strontium iridates with open-framework structure and their unexpected transformation into a highly active, ultrastable oxygen evolution nano-electrocatalyst are presented. This transformation involves two major steps: Sr2+ /H+ ion exchange in acid and in situ structural rearrangement under electrocatalysis conditions. Unlike its dense perovskite-structured polymorphs, the open-framework iridates have the ability to undergo rapid proton exchange in acid without framework amorphization. The resulting protonated iridates further reconstruct into ultrasmall, surface-hydroxylated, (200) crystal plane-oriented rutile nanocatalyst, instead of the common amorphous IrOx Hy phase, during acidic oxygen evolution. Such microstructural characteristics are found to benefit both the oxidation of hydroxyls and the formation of OO bonds in electrocatalytic cycle. As a result, the open-framework iridate derived nanocatalyst gives a comparable catalytic activity to the most active iridium-based oxygen evolution electrocatalysts in acid, and retains its catalytic activity for more than 1000 h
Beschreibung:Date Completed 23.03.2023
Date Revised 23.03.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202208539