Airborne Lidar Measurements of XCO2 in Synoptically Active Environment and Associated Comparisons With Numerical Simulations

© 2022. The Authors.

Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres : JGR. - 1998. - 127(2022), 16 vom: 27. Aug., Seite e2021JD035664
1. Verfasser: Walley, Samantha (VerfasserIn)
Weitere Verfasser: Pal, Sandip, Campbell, Joel F, Dobler, Jeremy, Bell, Emily, Weir, Brad, Feng, Sha, Lauvaux, Thomas, Baker, David, Blume, Nathan, Erxleben, Wayne, Fan, Tai-Fang, Lin, Bing, McGregor, Doug, Obland, Michael D, O'Dell, Chris, Davis, Kenneth J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of geophysical research. Atmospheres : JGR
Schlagworte:Journal Article airborne atmospheric measurements cold front column average CO2 dry air mole fraction greenhouse gases mid‐latitude cyclone
LEADER 01000caa a22002652 4500
001 NLM350941610
003 DE-627
005 20240909233232.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1029/2021JD035664  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM350941610 
035 |a (NLM)36582815 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Walley, Samantha  |e verfasserin  |4 aut 
245 1 0 |a Airborne Lidar Measurements of XCO2 in Synoptically Active Environment and Associated Comparisons With Numerical Simulations 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022. The Authors. 
520 |a Frontal boundaries have been shown to cause large changes in CO2 mole-fractions, but clouds and the complex vertical structure of fronts make these gradients difficult to observe. It remains unclear how the column average CO2 dry air mole-fraction (XCO2) changes spatially across fronts, and how well airborne lidar observations, data assimilation systems, and numerical models without assimilation capture XCO2 frontal contrasts (ΔXCO2, i.e., warm minus cold sector average of XCO2). We demonstrated the potential of airborne Multifunctional Fiber Laser Lidar (MFLL) measurements in heterogeneous weather conditions (i.e., frontal environment) to investigate the ΔXCO2 during four seasonal field campaigns of the Atmospheric Carbon and Transport-America (ACT-America) mission. Most frontal cases in summer (winter) reveal higher (lower) XCO2 in the warm (cold) sector than in the cold (warm) sector. During the transitional seasons (spring and fall), no clear signal in ΔXCO2 was observed. Intercomparison among the MFLL, assimilated fields from NASA's Global Modeling and Assimilation Office (GMAO), and simulations from the Weather Research and Forecasting--Chemistry (WRF-Chem) showed that (a) all products had a similar sign of ΔXCO2 though with different levels of agreement in ΔXCO2 magnitudes among seasons; (b) ΔXCO2 in summer decreases with altitude; and (c) significant challenges remain in observing and simulating XCO2 frontal contrasts. A linear regression analyses between ΔXCO2 for MFLL versus GMAO, and MFLL versus WRF-Chem for summer-2016 cases yielded a correlation coefficient of 0.95 and 0.88, respectively. The reported ΔXCO2 variability among four seasons provide guidance to the spatial structures of XCO2 transport errors in models and satellite measurements of XCO2 in synoptically-active weather systems 
650 4 |a Journal Article 
650 4 |a airborne atmospheric measurements 
650 4 |a cold front 
650 4 |a column average CO2 dry air mole fraction 
650 4 |a greenhouse gases 
650 4 |a mid‐latitude cyclone 
700 1 |a Pal, Sandip  |e verfasserin  |4 aut 
700 1 |a Campbell, Joel F  |e verfasserin  |4 aut 
700 1 |a Dobler, Jeremy  |e verfasserin  |4 aut 
700 1 |a Bell, Emily  |e verfasserin  |4 aut 
700 1 |a Weir, Brad  |e verfasserin  |4 aut 
700 1 |a Feng, Sha  |e verfasserin  |4 aut 
700 1 |a Lauvaux, Thomas  |e verfasserin  |4 aut 
700 1 |a Baker, David  |e verfasserin  |4 aut 
700 1 |a Blume, Nathan  |e verfasserin  |4 aut 
700 1 |a Erxleben, Wayne  |e verfasserin  |4 aut 
700 1 |a Fan, Tai-Fang  |e verfasserin  |4 aut 
700 1 |a Lin, Bing  |e verfasserin  |4 aut 
700 1 |a McGregor, Doug  |e verfasserin  |4 aut 
700 1 |a Obland, Michael D  |e verfasserin  |4 aut 
700 1 |a O'Dell, Chris  |e verfasserin  |4 aut 
700 1 |a Davis, Kenneth J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of geophysical research. Atmospheres : JGR  |d 1998  |g 127(2022), 16 vom: 27. Aug., Seite e2021JD035664  |w (DE-627)NLM098183494  |x 2169-897X  |7 nnns 
773 1 8 |g volume:127  |g year:2022  |g number:16  |g day:27  |g month:08  |g pages:e2021JD035664 
856 4 0 |u http://dx.doi.org/10.1029/2021JD035664  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 127  |j 2022  |e 16  |b 27  |c 08  |h e2021JD035664