Compute in-Memory with Non-Volatile Elements for Neural Networks : A Review from a Co-Design Perspective

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 37 vom: 29. Sept., Seite e2204944
1. Verfasser: Haensch, Wilfried (VerfasserIn)
Weitere Verfasser: Raghunathan, Anand, Roy, Kaushik, Chakrabarti, Bhaswar, Phatak, Charudatta M, Wang, Cheng, Guha, Supratik
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review analog computers compute in-memory cross-bar arrays non-volatile memory
LEADER 01000naa a22002652 4500
001 NLM350911681
003 DE-627
005 20231226050053.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202204944  |2 doi 
028 5 2 |a pubmed24n1169.xml 
035 |a (DE-627)NLM350911681 
035 |a (NLM)36579797 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Haensch, Wilfried  |e verfasserin  |4 aut 
245 1 0 |a Compute in-Memory with Non-Volatile Elements for Neural Networks  |b A Review from a Co-Design Perspective 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Deep learning has become ubiquitous, touching daily lives across the globe. Today, traditional computer architectures are stressed to their limits in efficiently executing the growing complexity of data and models. Compute-in-memory (CIM) can potentially play an important role in developing efficient hardware solutions that reduce data movement from compute-unit to memory, known as the von Neumann bottleneck. At its heart is a cross-bar architecture with nodal non-volatile-memory elements that performs an analog multiply-and-accumulate operation, enabling the matrix-vector-multiplications repeatedly used in all neural network workloads. The memory materials can significantly influence final system-level characteristics and chip performance, including speed, power, and classification accuracy. With an over-arching co-design viewpoint, this review assesses the use of cross-bar based CIM for neural networks, connecting the material properties and the associated design constraints and demands to application, architecture, and performance. Both digital and analog memory are considered, assessing the status for training and inference, and providing metrics for the collective set of properties non-volatile memory materials will need to demonstrate for a successful CIM technology 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a analog computers 
650 4 |a compute in-memory 
650 4 |a cross-bar arrays 
650 4 |a non-volatile memory 
700 1 |a Raghunathan, Anand  |e verfasserin  |4 aut 
700 1 |a Roy, Kaushik  |e verfasserin  |4 aut 
700 1 |a Chakrabarti, Bhaswar  |e verfasserin  |4 aut 
700 1 |a Phatak, Charudatta M  |e verfasserin  |4 aut 
700 1 |a Wang, Cheng  |e verfasserin  |4 aut 
700 1 |a Guha, Supratik  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 37 vom: 29. Sept., Seite e2204944  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:37  |g day:29  |g month:09  |g pages:e2204944 
856 4 0 |u http://dx.doi.org/10.1002/adma.202204944  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 37  |b 29  |c 09  |h e2204944