Controlled Iodine Phase Transfer of Covalent Organic Framework Membranes for Instant but Sustained Disinfection

Freestanding membranes of CuCl2-implanted TpPa covalent organic frameworks (COFs) were mechanochemically produced. The resulting membrane had a high I2 adsorption capacity (566.78 g·mol-1) in cyclohexane, which corresponds to 2.2I2 per unit cell with 1.3I2 immobilized on 3Cl- ions (60%) and 0.9 on 3...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 1 vom: 10. Jan., Seite 597-609
1. Verfasser: Jing, Liping (VerfasserIn)
Weitere Verfasser: Cheng, Chongling, Wang, Bo, Wang, Shun, Xie, Renguo, Xia, Haibing, Wang, Dayang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Metal-Organic Frameworks Iodine 9679TC07X4
Beschreibung
Zusammenfassung:Freestanding membranes of CuCl2-implanted TpPa covalent organic frameworks (COFs) were mechanochemically produced. The resulting membrane had a high I2 adsorption capacity (566.78 g·mol-1) in cyclohexane, which corresponds to 2.2I2 per unit cell with 1.3I2 immobilized on 3Cl- ions (60%) and 0.9 on 3N atoms (40%). Upon being placed in aqueous media, the membrane released 61.1% of its loaded I2 mainly by its Cl- ions within 10 min and the remaining 38.9% mainly from its N atoms within about 5 h. Thanks to that, the COF membranes loaded with 1.5 mg of I2 could be repetitively utilized to kill about 108 CFU/mL E. coli in 0.5-3 min at least five times, after which the membranes could retain their bactericidal activity for 4 h against 108 CFU/mL E. coli. This highlights the promising application of I2-loaded TpPa-CuCl2 COF membranes for instant and sustained disinfection
Beschreibung:Date Completed 11.01.2023
Date Revised 01.02.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c02892