Characterization of phosphate transporter genes and the function of SgPT1 involved in phosphate uptake in Stylosanthes guianensis

Copyright © 2022 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 194(2023) vom: 01. Jan., Seite 731-741
1. Verfasser: An, Na (VerfasserIn)
Weitere Verfasser: Huang, Jie, Xue, Yingbin, Liu, Pandao, Liu, Guodao, Zhu, Shengnan, Chen, Zhijian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Gene expression P deficiency Pi transporter Pi uptake Stylosanthes guianensis Phosphates Phosphate Transport Proteins Alanine Transaminase EC 2.6.1.2
Beschreibung
Zusammenfassung:Copyright © 2022 Elsevier Masson SAS. All rights reserved.
Phosphorus (P) is one of the principal macronutrients for plant growth and productivity. Although the phosphate (Pi) transporter (PT) of the PHT1 family has been functionally characterized as participating in Pi uptake and transport in plants, information about PT genes in stylo (Stylosanthes guianensis), an important tropical forage legume that exhibits good adaptability to low-P acid soils, is limited. In this study, stylo root growth was found to be stimulated under P deficiency. The responses of PT genes to nutrient deficiencies and their roles in Pi uptake were further investigated in stylo. Four novel PT genes were identified in stylo and designated SgPT2 to SgPT5. Like SgPT1, which had been previously identified, all five SgPT proteins harboured the major facilitator superfamily (MFS) domain. Variations in tissue-specific expression were observed among the SgPT genes, which displayed diverse responses to deficiencies in nitrogen (N), P and potassium (K) in stylo roots. Four of the five SgPTs exhibited high levels of transcriptional responsiveness to P deficiency in roots. Furthermore, SgPT1, a Pi-starvation-induced gene closely related to legume PT homologues that participate in Pi transport, was selected for functional analysis. SgPT1 was localized to the plasma membrane. Analysis of transgenic Arabidopsis showed that overexpression of SgPT1 led to increased Pi accumulation and promoted root growth in Arabidopsis plants. Taken together, the results of this study suggest the involvement of SgPTs in the stylo response to nutrient deprivation. SgPT1 might mediate Pi uptake in stylo, which is beneficial for root growth during P deficiency
Beschreibung:Date Completed 16.01.2023
Date Revised 16.01.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2022.12.021