Reconfigurable Electrical Networks within a Conductive Hydrogel Composite

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 14 vom: 04. Apr., Seite e2209408
1. Verfasser: Ohm, Yunsik (VerfasserIn)
Weitere Verfasser: Liao, Jiahe, Luo, Yichi, Ford, Michael J, Majidi, Carmel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article conductive hydrogel composites reconfigurable conductors reversible conductive networks soft conductive materials
LEADER 01000naa a22002652 4500
001 NLM350860823
003 DE-627
005 20231226045938.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202209408  |2 doi 
028 5 2 |a pubmed24n1169.xml 
035 |a (DE-627)NLM350860823 
035 |a (NLM)36574632 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ohm, Yunsik  |e verfasserin  |4 aut 
245 1 0 |a Reconfigurable Electrical Networks within a Conductive Hydrogel Composite 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Soft materials that exhibit compliance, programmability, and reconfigurability can have a transformative impact as electronic skin for applications in wearable electronics/soft robotics. There has been significant progress in soft conductive materials; however, achieving electrically controlled and reversible changes in conductivity and circuit connectivity remains challenging. To overcome this limitation, a soft material architecture with reconfigurable conductive networks of silver flakes embedded within a hydrogel matrix is presented. The conductive networks can be reversibly created/disconnected through various stimuli, including current, humidity, or temperature. Such stimuli affect electrical connectivity of the hydrogel by controlling its water content, which can be modulated by evaporation under ambient conditions (passive dehydration), evaporation through electrical Joule heating (active dehydration), or absorption of additional water (rehydration). The resulting change in electrical conductivity is reversible and repeatable, endowing the composite with on-demand reconfigurable conductivity. To highlight this material's unique properties, it is shown that conductive traces can be reconfigured after severe damage and revert to lower conductivity after rehydration. Additionally, a quadruped robot is demonstrated that can respond to stimuli by changing direction following exposure to excess water, thereby achieving reprogrammable locomotion behaviors 
650 4 |a Journal Article 
650 4 |a conductive hydrogel composites 
650 4 |a reconfigurable conductors 
650 4 |a reversible conductive networks 
650 4 |a soft conductive materials 
700 1 |a Liao, Jiahe  |e verfasserin  |4 aut 
700 1 |a Luo, Yichi  |e verfasserin  |4 aut 
700 1 |a Ford, Michael J  |e verfasserin  |4 aut 
700 1 |a Majidi, Carmel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 14 vom: 04. Apr., Seite e2209408  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:14  |g day:04  |g month:04  |g pages:e2209408 
856 4 0 |u http://dx.doi.org/10.1002/adma.202209408  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 14  |b 04  |c 04  |h e2209408