Robust Transport : An Artificial Solid Electrolyte Interphase Design for Anode-Free Lithium-Metal Batteries

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 20 vom: 19. Mai, Seite e2209404
1. Verfasser: Sun, Jinran (VerfasserIn)
Weitere Verfasser: Zhang, Shu, Li, Jiedong, Xie, Bin, Ma, Jun, Dong, Shanmu, Cui, Guanglei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Griffith theory of brittle fracture anode-free batteries artificial solid electrolyte interphase dendrite suppression ionic conductivity
LEADER 01000naa a22002652 4500
001 NLM350849587
003 DE-627
005 20231226045924.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202209404  |2 doi 
028 5 2 |a pubmed24n1169.xml 
035 |a (DE-627)NLM350849587 
035 |a (NLM)36573477 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Jinran  |e verfasserin  |4 aut 
245 1 0 |a Robust Transport  |b An Artificial Solid Electrolyte Interphase Design for Anode-Free Lithium-Metal Batteries 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.05.2023 
500 |a Date Revised 18.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a One of the most challenging issues in the practical implementation of high-energy-density anode-free lithium-metal batteries (AFLMBs) is the sharp capacity attenuation caused by the mechanical degradation of the solid electrolyte interphase (SEI). However, developing an artificial SEI to address this issue remains a challenge due to the trade-off between ionic conductivity and mechanical robustness for general ionic conducting films. In this study, a tenacious composite artificial SEI with integrated heterostructure of lithium fluoride (LiF) and lithium phosphorus oxynitride (LiPON) is prepared using a co-sputtering approach to achieve both high ionic conductivity and fracture toughness. The embedded LiF domain has an extremely high Young's modulus and surface energy compared with those of bulk LiPON film, enabling a significant increase in fracture toughness by an order of magnitude. Most importantly, the interface between LiPON and LiF in the integrated structure generates additional fast Li+ -transport pathways, providing the artificial SEI with a conductivity higher than 10-6 S cm-1 . Consequently, the artificial SEI implementation significantly increases the cycling lifetime of the corresponding AFLMBs by >250%. This study highlights the importance of fracture toughness for the structural integrity of batteries and provides suggestions for designing viable SEI materials for high-performance AFLMBs 
650 4 |a Journal Article 
650 4 |a Griffith theory of brittle fracture 
650 4 |a anode-free batteries 
650 4 |a artificial solid electrolyte interphase 
650 4 |a dendrite suppression 
650 4 |a ionic conductivity 
700 1 |a Zhang, Shu  |e verfasserin  |4 aut 
700 1 |a Li, Jiedong  |e verfasserin  |4 aut 
700 1 |a Xie, Bin  |e verfasserin  |4 aut 
700 1 |a Ma, Jun  |e verfasserin  |4 aut 
700 1 |a Dong, Shanmu  |e verfasserin  |4 aut 
700 1 |a Cui, Guanglei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 20 vom: 19. Mai, Seite e2209404  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:20  |g day:19  |g month:05  |g pages:e2209404 
856 4 0 |u http://dx.doi.org/10.1002/adma.202209404  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 20  |b 19  |c 05  |h e2209404