Automatic bad-pixel mask maker for X-ray pixel detectors with application to serial crystallography

© Alireza Sadri et al. 2022.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 55(2022), Pt 6 vom: 01. Dez., Seite 1549-1561
1. Verfasser: Sadri, Alireza (VerfasserIn)
Weitere Verfasser: Hadian-Jazi, Marjan, Yefanov, Oleksandr, Galchenkova, Marina, Kirkwood, Henry, Mills, Grant, Sikorski, Marcin, Letrun, Romain, de Wijn, Raphael, Vakili, Mohammad, Oberthuer, Dominik, Komadina, Dana, Brehm, Wolfgang, Mancuso, Adrian P, Carnis, Jerome, Gelisio, Luca, Chapman, Henry N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article bad-pixel masks machine learning robust mask maker robust statistics serial crystallography
LEADER 01000caa a22002652 4500
001 NLM350821739
003 DE-627
005 20240909233219.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576722009815  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM350821739 
035 |a (NLM)36570663 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sadri, Alireza  |e verfasserin  |4 aut 
245 1 0 |a Automatic bad-pixel mask maker for X-ray pixel detectors with application to serial crystallography 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.09.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Alireza Sadri et al. 2022. 
520 |a X-ray crystallography has witnessed a massive development over the past decade, driven by large increases in the intensity and brightness of X-ray sources and enabled by employing high-frame-rate X-ray detectors. The analysis of large data sets is done via automatic algorithms that are vulnerable to imperfections in the detector and noise inherent with the detection process. By improving the model of the behaviour of the detector, data can be analysed more reliably and data storage costs can be significantly reduced. One major requirement is a software mask that identifies defective pixels in diffraction frames. This paper introduces a methodology and program based upon concepts of machine learning, called robust mask maker (RMM), for the generation of bad-pixel masks for large-area X-ray pixel detectors based on modern robust statistics. It is proposed to discriminate normally behaving pixels from abnormal pixels by analysing routine measurements made with and without X-ray illumination. Analysis software typically uses a Bragg peak finder to detect Bragg peaks and an indexing method to detect crystal lattices among those peaks. Without proper masking of the bad pixels, peak finding methods often confuse the abnormal values of bad pixels in a pattern with true Bragg peaks and flag such patterns as useful regardless, leading to storage of enormous uninformative data sets. Also, it is computationally very expensive for indexing methods to search for crystal lattices among false peaks and the solution may be biased. This paper shows how RMM vastly improves peak finders and prevents them from labelling bad pixels as Bragg peaks, by demonstrating its effectiveness on several serial crystallography data sets 
650 4 |a Journal Article 
650 4 |a bad-pixel masks 
650 4 |a machine learning 
650 4 |a robust mask maker 
650 4 |a robust statistics 
650 4 |a serial crystallography 
700 1 |a Hadian-Jazi, Marjan  |e verfasserin  |4 aut 
700 1 |a Yefanov, Oleksandr  |e verfasserin  |4 aut 
700 1 |a Galchenkova, Marina  |e verfasserin  |4 aut 
700 1 |a Kirkwood, Henry  |e verfasserin  |4 aut 
700 1 |a Mills, Grant  |e verfasserin  |4 aut 
700 1 |a Sikorski, Marcin  |e verfasserin  |4 aut 
700 1 |a Letrun, Romain  |e verfasserin  |4 aut 
700 1 |a de Wijn, Raphael  |e verfasserin  |4 aut 
700 1 |a Vakili, Mohammad  |e verfasserin  |4 aut 
700 1 |a Oberthuer, Dominik  |e verfasserin  |4 aut 
700 1 |a Komadina, Dana  |e verfasserin  |4 aut 
700 1 |a Brehm, Wolfgang  |e verfasserin  |4 aut 
700 1 |a Mancuso, Adrian P  |e verfasserin  |4 aut 
700 1 |a Carnis, Jerome  |e verfasserin  |4 aut 
700 1 |a Gelisio, Luca  |e verfasserin  |4 aut 
700 1 |a Chapman, Henry N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 55(2022), Pt 6 vom: 01. Dez., Seite 1549-1561  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:55  |g year:2022  |g number:Pt 6  |g day:01  |g month:12  |g pages:1549-1561 
856 4 0 |u http://dx.doi.org/10.1107/S1600576722009815  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 55  |j 2022  |e Pt 6  |b 01  |c 12  |h 1549-1561