Benchmark accuracy of predicted NMR observables for quadrupolar 14 N and 17 O nuclei in molecular crystals

© 2022 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 61(2023), 4 vom: 25. Apr., Seite 253-267
1. Verfasser: Hartman, Joshua D (VerfasserIn)
Weitere Verfasser: Spock, Lilian E, Harper, James K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article GIPAW chemical calculations electrostatic embedding fragment methods solid-state NMR
Beschreibung
Zusammenfassung:© 2022 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
Nuclear quadrupole resonances for 14 N and 17 O nuclei are exquisitely sensitive to interactions with surrounding atoms. As a result, nitrogen and oxygen solid-state nuclear magnetic resonance (ssNMR) provides a powerful tool for investigating structure and dynamics in complex systems. First-principles calculations are increasingly used to facilitate spectral assignment and to evaluate and adjust crystal structures. Recent work combining the strengths of planewave density functional theory (DFT) calculations with a single molecule correction obtained using a higher level of theory has proven successful in improving the accuracy of predicted chemical shielding (CS) tensors and 17 O quadrupolar coupling constants ( C q ). Here we extend this work by examining the accuracy of predicted 14 N and 17 O electric field gradient (EFG) tensor components obtained using alternative planewave-corrections involving cluster and two-body fragment-based calculations. We benchmark the accuracy of CS and EFG tensor predictions for both nitrogen and oxygen using planewave, two-body fragment, and enhanced planewave-corrected techniques. Combining planewave and two-body fragment calculations reduces the error in predicted 17 O C q values by 35% relative to traditional planewave calculations. These enhanced planewave-correction methods improve the accuracy of 17 O and 14 N EFG tensor components by 15% relative to planewave DFT but yield minimal improvement relative to a simple molecular correction. However, in structural environments involving either high symmetry or strong intermolecular interactions, enhanced planewave-corrected methods provide a distinct advantage
Beschreibung:Date Completed 13.03.2023
Date Revised 13.03.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.5328