The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa)

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 237(2023), 6 vom: 23. März, Seite 2163-2179
1. Verfasser: Luo, Lixin (VerfasserIn)
Weitere Verfasser: Xie, Yuelan, Yu, Sijia, Yang, Jing, Chen, Sirong, Yuan, Xi, Guo, Tao, Wang, Hui, Liu, Yongzhu, Chen, Chun, Xiao, Wuming, Chen, Zhiqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't IPA1 NAL11 gibberellin plant architecture rice Gibberellins Plant Proteins
Beschreibung
Zusammenfassung:© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Ideal Plant Architecture 1 (IPA1) is a key regulator of plant architecture. However, knowledge of downstream genes applicable for improving rice plant architecture is very limited. We identified the plant architecture regulatory gene NARROW LEAF 11 (NAL11), which encodes a heat-shock protein (HSP) containing a DnaJ domain. A promising rare allele of NAL11 (NAL11-923del-1552 ) positively selected in Aus cultivars was identified; this allele exhibited increased expression and generated relatively few tillers, thick stems, and large panicles, components of the ideal plant architecture (IPA). NAL11 is involved in regulating the cell cycle and cell proliferation. NAL11 loss-of-function mutants present impaired chloroplast development and gibberellin (GA) defects. Biochemical analyses show that IPA1 directly binds to elements in the missing fragment of the NAL11-923del-1552 promoter and negatively regulates NAL11 expression. Genetic analyses support the hypothesis that NAL11 acts downstream of IPA1 to regulate IPA by modulating GA homeostasis, and NAL11 may be an essential complement for IPA1. Our work revealed that avoidance of the inhibition of NAL11-923del-1552 caused by IPA1 represents a positive strategy for rescuing GA defects accompanied by the upregulation of IPA1 in breeding high-yield rice
Beschreibung:Date Completed 22.02.2023
Date Revised 22.02.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.18696