Artificial Intelligence-Based Rapid Design of Grease with Chemically Functionalized Graphene and Carbon Nanotubes as Lubrication Additives

Rapid chemical functionalization of additives and efficient determination of their optimum concentrations are important for designing high-performance lubricants, especially under multi-additive conditions. Herein, chemically functionalized graphene (FGR) and carbon nanotubes (FCNTs) were rapidly pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 1 vom: 10. Jan., Seite 647-658
1. Verfasser: Wang, Siyuan (VerfasserIn)
Weitere Verfasser: Liang, Zhao, Liu, Ling, Wan, Peng, Qian, Qihao, Chen, Yaotong, Jia, Shuo, Chen, Ding
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Rapid chemical functionalization of additives and efficient determination of their optimum concentrations are important for designing high-performance lubricants, especially under multi-additive conditions. Herein, chemically functionalized graphene (FGR) and carbon nanotubes (FCNTs) were rapidly prepared by microwave-assisted ball milling and subsequently introduced into grease as additives. The tribological properties of the additives in grease at different concentrations and ratios were measured using a four-ball test. A reliable artificial neural network (ANN) model was established according to a few test results. Subsequently, the optimal concentration of multiple additives in the grease was predicted using a genetic algorithm and experimentally validated. The results indicated that the introduction of FGR (0.14 wt %) and FCNT (0.16 wt %) improved the antifriction and anti-wear performance of the base grease by 25.66 and 29.34%, respectively. The results of the ANN model analysis and friction interface characterization indicate that such performance is principally attributed to the synergistic lubrication of the FGR and FCNT
Beschreibung:Date Completed 10.01.2023
Date Revised 11.01.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c03006