Effects of Hydrothermal Treatment on Mesopore Structure and Connectivity in Doped Ceria-Zirconia Mixed Oxides

Pore size and pore connectivity control diffusion-based transport in mesopores, a crucial property governing the performance of heterogeneous catalysts. In many cases, transition-metal oxide catalyst materials are prepared from molecular precursors involving hydrothermal treatment followed by heat t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 1 vom: 10. Jan., Seite 177-191
1. Verfasser: Prates da Costa, Eric (VerfasserIn)
Weitere Verfasser: Huang, Xiaohui, Kübel, Christian, Cheng, Xiaoyin, Schladitz, Katja, Hofmann, Alexander, Göbel, Ulrich, Smarsly, Bernd M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Pore size and pore connectivity control diffusion-based transport in mesopores, a crucial property governing the performance of heterogeneous catalysts. In many cases, transition-metal oxide catalyst materials are prepared from molecular precursors involving hydrothermal treatment followed by heat treatment. Here, we investigate the effects of such a hydrothermal aftertreatment step, using an aqueous ammonia solution, on the disordered mesopore network of CexZr1-x-y-zYyLazO2-δ mixed oxides. This procedure is a common synthesis step in the preparation of such ceria-based oxygen storage materials applied in three-way catalysis, employed to improve the materials' thermal stability. We perform state-of-the-art Ar-physisorption analysis, especially advanced hysteresis scanning, to paint a detailed picture of the alterations in mesopore space caused by the hydrothermal aftertreatment and subsequent aging at 1050 °C. Furthermore, we investigate the network characteristics by electron tomography in combination with suitable statistical analysis, enabling a consistent interpretation of the desorption scans (physisorption). The results indicate that the hydrothermal aftertreatment enhances the mesopore connectivity of the continuous 3D network by widening pores and especially necks, hence facilitating accessibility to the particles' internal surface area and the ability to better withstand high temperatures
Beschreibung:Date Completed 10.01.2023
Date Revised 11.01.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c02366