Comparative study on the treatment of refractory organics in landfill leachate by homogeneous and heterogeneous Fenton advanced oxidation processes

With the advancement of the landfill stabilization process of municipal solid waste, landfill leachate containing a large amount of refractory organic matter is formed. In this study, homogeneous Fenton and heterogeneous Fenton-like (activation by zero valent iron (Fe0), pyrite (FeS2) and magnetite...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 41(2023), 6 vom: 01. Juni, Seite 1102-1113
1. Verfasser: Li, Yihui (VerfasserIn)
Weitere Verfasser: Li, Zhiheng, Bai, Jie, Wang, Fan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Landfill leachate advanced oxidation process heterogeneous Fenton-like homogeneous Fenton refractory organic matter Water Pollutants, Chemical Hydrogen Peroxide BBX060AN9V Iron mehr... E1UOL152H7 Solid Waste
Beschreibung
Zusammenfassung:With the advancement of the landfill stabilization process of municipal solid waste, landfill leachate containing a large amount of refractory organic matter is formed. In this study, homogeneous Fenton and heterogeneous Fenton-like (activation by zero valent iron (Fe0), pyrite (FeS2) and magnetite (Fe3O4) as solid iron materials) processes have been compared for the removal of refractory organics from landfill leachate. The removal efficiency of organics in the Fenton process was slightly higher than those in the Fenton-like processes. The removal efficiencies based on total organic carbon, UV absorbance at 254 nm (UV254) and colour number in the Fenton process were as high as 57.42%, 71.63% and 81.03%, respectively. In the Fenton-like processes, the Fe0/H2O2 process achieved 35.74%, 66.24% and 86.29% removal efficiencies, respectively. Moreover, the degradation effect on refractory organic substances proved to be better. In the Fenton-like processes, the activation mechanisms with Fe0 and FeS2 involve the homogeneous activation of Fe2+ in solution and heterogeneous activation of iron oxides produced during the reaction, respectively. With Fe3O4, the activation mechanism is mainly a heterogeneous process involving its intrinsic iron oxide constituents. This study may provide a theoretical basis for the treatment of refractory organics in landfill leachate
Beschreibung:Date Completed 17.05.2023
Date Revised 17.05.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X221140032