|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM350553343 |
003 |
DE-627 |
005 |
20231226045247.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202202193
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1168.xml
|
035 |
|
|
|a (DE-627)NLM350553343
|
035 |
|
|
|a (NLM)36543760
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Longhao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a High-Performance Organohydrogel Artificial Muscle with Compartmentalized Anisotropic Actuation Under Microdomain Confinement
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.03.2023
|
500 |
|
|
|a Date Revised 02.03.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Current hydrogel actuators mostly suffer from weak actuation strength and low responsive speed owing to their solvent diffusion-induced volume change mechanism. Here a skeletal muscle-inspired organohydrogel actuator is reported in which solvents are confined in hydrophobic microdomains. Organohydrogel actuator is driven by compartmentalized directional network deformation instead of volume change, avoiding the limitations that originate from solvent diffusion. Organohydrogel actuator has an actuation frequency of 0.11 Hz, 110 times that of traditional solvent diffusion-driven hydrogel actuators (<10-3 Hz), and can lift more than 85 times their own weight. This design achieves the combination of high responsive speed, high actuation strength, and large material size, proposing a strategy to fabricate hydrogel actuators comparable with skeletal muscle performance
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a artificial muscle
|
650 |
|
4 |
|a muscle-mimicking
|
650 |
|
4 |
|a organohydrogels
|
650 |
|
4 |
|a phase transitions
|
650 |
|
4 |
|a soft confinement
|
700 |
1 |
|
|a Yan, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, JiaJia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Ziguang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Jin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Lie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ru, Yunfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Mingjie
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 9 vom: 01. März, Seite e2202193
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:9
|g day:01
|g month:03
|g pages:e2202193
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202202193
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 9
|b 01
|c 03
|h e2202193
|