Polymer-Dispersed Liquid Crystal Films on Flexible Substrates with Excellent Bending Resistance and Spacing Stability

Polymer-dispersed liquid crystals (PDLCs) are very attractive due to their electrically switchable properties. However, current PDLC films still have problems such as high driving voltages, low contrast ratio (CR), and poor bending resistance and spacing stability. To solve these problems, a PDLC fi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 1 vom: 10. Jan., Seite 610-618
1. Verfasser: Yu, Ping (VerfasserIn)
Weitere Verfasser: Chen, Xianliang, Zhang, Dongxia, Gao, Jianjing, Ma, Cheng, Zhang, Cuihong, He, Zemin, Wang, Dong, Miao, Zongcheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Polymer-dispersed liquid crystals (PDLCs) are very attractive due to their electrically switchable properties. However, current PDLC films still have problems such as high driving voltages, low contrast ratio (CR), and poor bending resistance and spacing stability. To solve these problems, a PDLC film with a system of coexisting polymer spacer columns and polymer network was proposed. First, based on the adhesive systems of IBMA and UV6301, the effects of IBMA concentration and LC content on the morphology of the polymer network and the electro-optical properties of PDLC were investigated, respectively. Then, the effects of the process conditions of mask polymerization such as temperature, time, and UV light intensity on the morphology and electro-optical properties of the polymer spacer columns were systematically investigated. It was found that PDLC films with the coexistence system exhibit both excellent electro-optical properties and outstanding bending resistance and spacing stability. Thus, it provides new practical possibilities for the preparation of high-performance PDLC films used in flexible devices
Beschreibung:Date Completed 10.01.2023
Date Revised 11.01.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c02895