Elastic statistical analysis of interval-valued time series

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 50(2023), 1 vom: 08., Seite 60-85
Auteur principal: Zhang, Honggang (Auteur)
Autres auteurs: Su, Jingyong, Tang, Linlin, Srivastava, Anuj
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Time warping elastic shape analysis interval-valued time series
LEADER 01000caa a22002652c 4500
001 NLM350426082
003 DE-627
005 20250304054713.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1981257  |2 doi 
028 5 2 |a pubmed25n1167.xml 
035 |a (DE-627)NLM350426082 
035 |a (NLM)36530776 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Honggang  |e verfasserin  |4 aut 
245 1 0 |a Elastic statistical analysis of interval-valued time series 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.12.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a We investigate the problem of statistical analysis of interval-valued time series data - two nonintersecting real-valued functions, representing lower and upper limits, over a period of time. Specifically, we pay attention to the two concepts of phase (or horizontal) variability and amplitude (or vertical) variability, and propose a phase-amplitude separation method. We view interval-valued time series as elements of a function (Hilbert) space and impose a Riemannian structure on it. We separate phase and amplitude variability in observed interval functions using a metric-based alignment solution. The key idea is to map an interval to a point in R 2 , view interval-valued time series as parameterized curves in R 2 , and borrow ideas from elastic shape analysis of planar curves, including PCA, to perform registration, summarization, analysis, and modeling of multiple series. The proposed phase-amplitude separation provides a new way of PCA and modeling for interval-valued time series, and enables shape clustering of interval-valued time series. We apply this framework to three different applications, including finance, meteorology and physiology, proves the effectiveness of proposed methods, and discovers some underlying patterns in the data. Experimental results on simulated data show that our method applies to the point-valued time series 
650 4 |a Journal Article 
650 4 |a Time warping 
650 4 |a elastic shape analysis 
650 4 |a interval-valued time series 
700 1 |a Su, Jingyong  |e verfasserin  |4 aut 
700 1 |a Tang, Linlin  |e verfasserin  |4 aut 
700 1 |a Srivastava, Anuj  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 1 vom: 08., Seite 60-85  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:1  |g day:08  |g pages:60-85 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1981257  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 1  |b 08  |h 60-85