Rational Design of Platinum-Bismuth Sulfide Schottky Heterostructure for Sonocatalysis-Mediated Hydrogen Therapy

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 10 vom: 17. März, Seite e2209589
1. Verfasser: Yuan, Meng (VerfasserIn)
Weitere Verfasser: Liang, Shuang, Yang, Ling, Li, Fang, Liu, Bin, Yang, Chunzheng, Yang, Zhuang, Bian, Yulong, Ma, Ping'an, Cheng, Ziyong, Lin, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article hole-scavengers hydrogen therapy sonocatalysis sonosensitizers bismuth sulfide XZC47M60X8 Platinum 49DFR088MY Oxygen mehr... S88TT14065 Glutathione GAN16C9B8O Hydrogen Peroxide BBX060AN9V
LEADER 01000caa a22002652c 4500
001 NLM350406170
003 DE-627
005 20250304054434.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202209589  |2 doi 
028 5 2 |a pubmed25n1167.xml 
035 |a (DE-627)NLM350406170 
035 |a (NLM)36528782 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Meng  |e verfasserin  |4 aut 
245 1 0 |a Rational Design of Platinum-Bismuth Sulfide Schottky Heterostructure for Sonocatalysis-Mediated Hydrogen Therapy 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.03.2023 
500 |a Date Revised 14.03.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Conventional sonodynamic therapy is unavoidably limited by the tumor microenvironment, although many sonosensitizers have been developed to improve them to a certain extent. Given this, a concept of sonocatalytic hydrogen evolution is proposed, which is defined as an oxygen-independent therapeutics. To demonstrate the feasibility of the concept, the narrow-bandgap semiconductor bismuth sulfide (Bi2 S3 ) is selected as the sonocatalyst and platinum (Pt) nanoparticles are grown in situ to optimize their catalytic performance. In this nanocatalytic system, the Pt nanoparticles help to capture sonoexcited electrons, whereas intratumoral overexpressed glutathione (GSH), as a natural hole sacrificial agent, can consume sonoexcited holes, which greatly improves the charge-separation efficiency and promotes controllable and sustainable H2  generation. Even under hypoxic conditions, the Pt-Bi2 S3  nanoparticles can also produce sufficient H2  under ultrasound irradiation. Mechanistically, mitochondrial dysfunction caused by H2  and intratumoral redox homeostasis destruction by GSH depletion synergistically damage DNA to induce tumor cells apoptosis. At the same time, the Pt nanoparticles and holes can also trigger the decomposition of hydrogen peroxide into O2  to relieve tumor hypoxia, thus being synergistic with GSH depletion to reverse tumor immunosuppressive microenvironment. The proposed sonocatalysis-mediated therapy will provide a new direction to realize facile and efficient cancer therapy 
650 4 |a Journal Article 
650 4 |a hole-scavengers 
650 4 |a hydrogen therapy 
650 4 |a sonocatalysis 
650 4 |a sonosensitizers 
650 7 |a bismuth sulfide  |2 NLM 
650 7 |a XZC47M60X8  |2 NLM 
650 7 |a Platinum  |2 NLM 
650 7 |a 49DFR088MY  |2 NLM 
650 7 |a Oxygen  |2 NLM 
650 7 |a S88TT14065  |2 NLM 
650 7 |a Glutathione  |2 NLM 
650 7 |a GAN16C9B8O  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
700 1 |a Liang, Shuang  |e verfasserin  |4 aut 
700 1 |a Yang, Ling  |e verfasserin  |4 aut 
700 1 |a Li, Fang  |e verfasserin  |4 aut 
700 1 |a Liu, Bin  |e verfasserin  |4 aut 
700 1 |a Yang, Chunzheng  |e verfasserin  |4 aut 
700 1 |a Yang, Zhuang  |e verfasserin  |4 aut 
700 1 |a Bian, Yulong  |e verfasserin  |4 aut 
700 1 |a Ma, Ping'an  |e verfasserin  |4 aut 
700 1 |a Cheng, Ziyong  |e verfasserin  |4 aut 
700 1 |a Lin, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 10 vom: 17. März, Seite e2209589  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:10  |g day:17  |g month:03  |g pages:e2209589 
856 4 0 |u http://dx.doi.org/10.1002/adma.202209589  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 10  |b 17  |c 03  |h e2209589