Influence of Surface Roughness on Droplet Evaporation and Absorption : Insights into Experiments from Lubrication-Theory-Based Models

While solid substrates are often idealized as being perfectly smooth, all real surfaces possess some level of topographical and chemical heterogeneity. This heterogeneity can greatly influence droplet dynamics. Mathematical models based on lubrication theory that account for surface roughness reveal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 51 vom: 27. Dez., Seite 15889-15904
1. Verfasser: Kumar, Satish (VerfasserIn)
Weitere Verfasser: Charitatos, Vasileios
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Review
Beschreibung
Zusammenfassung:While solid substrates are often idealized as being perfectly smooth, all real surfaces possess some level of topographical and chemical heterogeneity. This heterogeneity can greatly influence droplet dynamics. Mathematical models based on lubrication theory that account for surface roughness reveal how topographical defects induce contact-line pinning and affect the deposition patterns of colloidal particles suspended in the droplet. Contact-line pinning profoundly changes the behavior of droplet evaporation on horizontal and inclined impermeable substrates and droplet absorption on horizontal permeable substrates. Models accounting for surface roughness yield predictions that are qualitatively consistent with experimental observations and also provide insight into the underlying physical mechanisms. These models are a foundation for the exploration of a rich array of problems concerning droplet dynamics which are of both fundamental and practical interest
Beschreibung:Date Completed 27.12.2022
Date Revised 03.01.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c01930