|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM350291756 |
003 |
DE-627 |
005 |
20250304053043.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202205410
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1167.xml
|
035 |
|
|
|a (DE-627)NLM350291756
|
035 |
|
|
|a (NLM)36517207
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zheng, Weilin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Emerging Halide Perovskite Ferroelectrics
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 25.05.2023
|
500 |
|
|
|a Date Revised 25.05.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Halide perovskites have gained tremendous attention in the past decade owing to their excellent properties in optoelectronics. Recently, a fascinating property, ferroelectricity, has been discovered in halide perovskites and quickly attracted widespread interest. Compared with traditional perovskite oxide ferroelectrics, halide perovskites display natural advantages such as structural softness, low weight, and easy processing, which are highly desirable in applications pursuing miniaturization and flexibility. This review focuses on the current research progress in halide perovskite ferroelectrics, encompassing the emerging materials systems and their potential applications in ferroelectric photovoltaics, self-powered photodetection, and X-ray detection. The main challenges and possible solutions in the future development of halide perovskite ferroelectric materials are also attempted to be pointed out
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a ferroelectricity
|
650 |
|
4 |
|a halide perovskite
|
650 |
|
4 |
|a photodetection
|
650 |
|
4 |
|a photovoltaics
|
650 |
|
4 |
|a structural dimensionality
|
700 |
1 |
|
|a Wang, Xiucai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Bing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Suo, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xing, Zhifeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yanze
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Han-Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Jiangkun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Feng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 21 vom: 08. Mai, Seite e2205410
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:21
|g day:08
|g month:05
|g pages:e2205410
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202205410
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 21
|b 08
|c 05
|h e2205410
|