Thermally Crosslinked Hole Conductor Enables Stable Inverted Perovskite Solar Cells with 23.9% Efficiency

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 9 vom: 17. März, Seite e2209422
1. Verfasser: Zhang, Cuiping (VerfasserIn)
Weitere Verfasser: Liao, Qiaogan, Chen, Jinyu, Li, Bolin, Xu, Chaoying, Wei, Kun, Du, Guozheng, Wang, Yang, Liu, Dachang, Deng, Jidong, Luo, Zhide, Pang, Shuping, Yang, Ye, Li, Jingrui, Yang, Li, Guo, Xugang, Zhang, Jinbao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article buried interfaces cross-linking energy disorder polymer hole conductors
LEADER 01000naa a22002652 4500
001 NLM350274339
003 DE-627
005 20231226044632.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202209422  |2 doi 
028 5 2 |a pubmed24n1167.xml 
035 |a (DE-627)NLM350274339 
035 |a (NLM)36515434 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Cuiping  |e verfasserin  |4 aut 
245 1 0 |a Thermally Crosslinked Hole Conductor Enables Stable Inverted Perovskite Solar Cells with 23.9% Efficiency 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.03.2023 
500 |a Date Revised 02.03.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) represents the state-of-the-art hole transport material (HTM) in inverted perovskite solar cells (PSCs). However, unsatisfied surface properties of PTAA and high energy disorder in the bulk film hinder the further enhancement of device performance. Herein, a simple small molecule 10-(4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)-3,7-bis(4-vinylphenyl)-10H-phenoxazine (MCz-VPOZ) is strategically developed for in situ fabrication of polymer hole conductor (CL-MCz) via a facile and low-temperature cross-linking technology. The resulting polymer CL-MCz offers high energy ordering and improved electrical conductivity, as well as appropriate energy-level alignment, enabling efficient charge carrier collection in the devices. Meanwhile, CL-MCz synchronously provides satisfied surface wettability and interfacial functionalization, facilitating the formation of high-quality perovskite films with fewer bulk iodine vacancies and suppressed carrier recombination. Significantly, the device with CL-MCz yields a champion efficiency of 23.9% along with an extremely low energy loss down to 0.41 eV, which represents the highest reported efficiency for non-PTAA-based polymer HTMs in inverted PSCs. Furthermore, the corresponding unencapsulated devices exhibit competitive shelf-life stability under various operational stressors up to 2500 h, reflecting high promises of CL-MCz in the scalable PSC application. This work underscores the promising potential of the cross-linking approach in preparing low-cost, stable, and efficient polymer HTMs toward reliable PSCs 
650 4 |a Journal Article 
650 4 |a buried interfaces 
650 4 |a cross-linking 
650 4 |a energy disorder 
650 4 |a polymer hole conductors 
700 1 |a Liao, Qiaogan  |e verfasserin  |4 aut 
700 1 |a Chen, Jinyu  |e verfasserin  |4 aut 
700 1 |a Li, Bolin  |e verfasserin  |4 aut 
700 1 |a Xu, Chaoying  |e verfasserin  |4 aut 
700 1 |a Wei, Kun  |e verfasserin  |4 aut 
700 1 |a Du, Guozheng  |e verfasserin  |4 aut 
700 1 |a Wang, Yang  |e verfasserin  |4 aut 
700 1 |a Liu, Dachang  |e verfasserin  |4 aut 
700 1 |a Deng, Jidong  |e verfasserin  |4 aut 
700 1 |a Luo, Zhide  |e verfasserin  |4 aut 
700 1 |a Pang, Shuping  |e verfasserin  |4 aut 
700 1 |a Yang, Ye  |e verfasserin  |4 aut 
700 1 |a Li, Jingrui  |e verfasserin  |4 aut 
700 1 |a Yang, Li  |e verfasserin  |4 aut 
700 1 |a Guo, Xugang  |e verfasserin  |4 aut 
700 1 |a Zhang, Jinbao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 9 vom: 17. März, Seite e2209422  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:9  |g day:17  |g month:03  |g pages:e2209422 
856 4 0 |u http://dx.doi.org/10.1002/adma.202209422  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 9  |b 17  |c 03  |h e2209422