Regression modeling of combined sewer overflows to assess system performance

Combined sewer overflows (CSOs) occur when untreated raw sewage mixed with rainwater, runoff, or snowmelt is released during or after a storm in any community with a combined sewer system (CSS). Climate change makes CSOs worse in many locales; as the frequency and severity of wet weather events incr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 86(2022), 11 vom: 01. Dez., Seite 2848-2860
1. Verfasser: A Bizer, Matthew (VerfasserIn)
Weitere Verfasser: Kirchhoff, Christine J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Sewage
LEADER 01000naa a22002652 4500
001 NLM350271968
003 DE-627
005 20231226044630.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2022.362  |2 doi 
028 5 2 |a pubmed24n1167.xml 
035 |a (DE-627)NLM350271968 
035 |a (NLM)36515193 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a A Bizer, Matthew  |e verfasserin  |4 aut 
245 1 0 |a Regression modeling of combined sewer overflows to assess system performance 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.12.2022 
500 |a Date Revised 22.12.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Combined sewer overflows (CSOs) occur when untreated raw sewage mixed with rainwater, runoff, or snowmelt is released during or after a storm in any community with a combined sewer system (CSS). Climate change makes CSOs worse in many locales; as the frequency and severity of wet weather events increases, so do the frequency and volume of CSO events. CSOs pose risks to humans and the environment, and as such, CSS communities are under regulatory pressure to reduce CSOs. Yet, CSS communities lack the tools needed, such as performance indicators, to assess CSS performance. Using the city of Cumberland, Maryland as a case study, we use public data on CSOs and precipitation over a span of 16 years to identify a new critical rainfall intensity threshold that triggers likely CSO incidence, and a multiple linear regression model to predict CSO volume using rainfall event characteristics. Together, this indicator and modeling approach can help CSS communities assess the performance of their CSS over time, especially to evaluate the effectiveness of efforts to reduce CSOs 
650 4 |a Journal Article 
650 7 |a Sewage  |2 NLM 
700 1 |a Kirchhoff, Christine J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 86(2022), 11 vom: 01. Dez., Seite 2848-2860  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:86  |g year:2022  |g number:11  |g day:01  |g month:12  |g pages:2848-2860 
856 4 0 |u http://dx.doi.org/10.2166/wst.2022.362  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 86  |j 2022  |e 11  |b 01  |c 12  |h 2848-2860