Effect of hydraulic retention time on performance of autotrophic, heterotrophic, and split-mixotrophic denitrification systems supported by polycaprolactone/pyrite : Difference and potential explanation

© 2022 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 94(2022), 12 vom: 17., Seite e10820
1. Verfasser: Yuan, Sicheng (VerfasserIn)
Weitere Verfasser: Zhu, Wentao, Guo, Weijie, Sang, Wenjiao, Zhang, Shiyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article autotrophic denitrification heterotrophic denitrification hydraulic retention time simultaneous nitrogen and phosphorus removal split-mixotrophic denitrification pyrite 132N09W4PR Nitrates polycaprolactone mehr... 24980-41-4 Nitrogen N762921K75 Sulfur 70FD1KFU70
LEADER 01000naa a22002652 4500
001 NLM350263116
003 DE-627
005 20231226044619.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.10820  |2 doi 
028 5 2 |a pubmed24n1167.xml 
035 |a (DE-627)NLM350263116 
035 |a (NLM)36514302 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Sicheng  |e verfasserin  |4 aut 
245 1 0 |a Effect of hydraulic retention time on performance of autotrophic, heterotrophic, and split-mixotrophic denitrification systems supported by polycaprolactone/pyrite  |b Difference and potential explanation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.12.2022 
500 |a Date Revised 22.12.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2022 Water Environment Federation. 
520 |a Biological denitrification is still the most important pathway to purifying nitrate-containing wastewater. In this study, pyrite (FeS2 ) and polycaprolactone (PCL) were used as electron donors to construct sole or combined denitrification systems, that is, pyrite-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system, and split-mixotrophic denitrification system (combined PAD + PHD), all of which were operated under five different hydraulic retention times (HRTs) for 150 days. The results showed that the removal rates (RE) of nitrate (NO3 - -N) and inorganic phosphorus (PO4 3- -P) by PAD were 91% and 94%, respectively, but the effluent sulfate (SO4 2- ) concentration was as high as 168.2 mg/L; the removal rate of NO3 - -N by PHD was higher than 99%, but the PO4 3- -P could not be removed ideally; the removal rates of NO3 - -N and PO4 3- -P by PAD + PHD were higher than 95% and 99%, respectively, and the effluent SO4 2- concentration was only 7.2 mg/L. Through the analysis of the surface scanning electron microscope (SEM) images of the two kinds of media before and after use, it was found that the coupled mode of PAD + PHD was more favorable for biofilm formation than the sole PAD or PHD process, and the microorganisms in the PAD + PHD mode made more full use of electron donors. Moreover, the biomass of the PAD + PHD mode was lower than that of the PAD or PHD process, but the denitrification efficiency of the coupled mode was more efficient, indicating that the functional microorganisms in the PAD + PHD mode might have a certain synergistic effect. PRACTITIONER POINTS: Removal rates of NO3 -, PO4 3 -, and SO4 2 - by PAD were 91%, 94%, and -233%, respectively. Removal rate of NO3 - by PHD exceeded 99%, but PO4 3 - could not be removed ideally. Removal rates of NO3 -, PO4 3 -, and SO4 2 - by PAD + PHD were 95%, 99%, and 86%, respectively. The coupled mode was more favorable for biofilm formation than the sole PAD or PHD. The coupled mode had lower biomass but got more excellent denitrification efficiency 
650 4 |a Journal Article 
650 4 |a autotrophic denitrification 
650 4 |a heterotrophic denitrification 
650 4 |a hydraulic retention time 
650 4 |a simultaneous nitrogen and phosphorus removal 
650 4 |a split-mixotrophic denitrification 
650 7 |a pyrite  |2 NLM 
650 7 |a 132N09W4PR  |2 NLM 
650 7 |a Nitrates  |2 NLM 
650 7 |a polycaprolactone  |2 NLM 
650 7 |a 24980-41-4  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
650 7 |a Sulfur  |2 NLM 
650 7 |a 70FD1KFU70  |2 NLM 
700 1 |a Zhu, Wentao  |e verfasserin  |4 aut 
700 1 |a Guo, Weijie  |e verfasserin  |4 aut 
700 1 |a Sang, Wenjiao  |e verfasserin  |4 aut 
700 1 |a Zhang, Shiyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 94(2022), 12 vom: 17., Seite e10820  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:94  |g year:2022  |g number:12  |g day:17  |g pages:e10820 
856 4 0 |u http://dx.doi.org/10.1002/wer.10820  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 94  |j 2022  |e 12  |b 17  |h e10820