|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM35020828X |
003 |
DE-627 |
005 |
20231226044457.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.2c01891
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1167.xml
|
035 |
|
|
|a (DE-627)NLM35020828X
|
035 |
|
|
|a (NLM)36508708
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Vara Prasad, Gudlavalleti V V S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Augmenting the Leidenfrost Temperature of Droplets via Nanobubble Dispersion
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.12.2022
|
500 |
|
|
|a Date Revised 03.01.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Droplets may rebound/levitate when deposited over a hot substrate (beyond a critical temperature) due to the formation of a stable vapor microcushion between the droplet and the substrate. This is known as the Leidenfrost phenomenon. In this article, we experimentally allow droplets to impact the hot surface with a certain velocity, and the temperature at which droplets show the onset of rebound with minimal spraying is known as the dynamic Leidenfrost temperature (TDL). Here we propose and validate a novel paradigm of augmenting the TDL by employing droplets with stable nanobubbles dispersed in the fluid. In this first-of-its-kind report, we show that the TDL can be delayed significantly by the aid of nanobubble-dispersed droplets. We explore the influence of the impact Weber number (We), the Ohnesorge number (Oh), and the role of nanobubble concentration on the TDL. At a fixed impact velocity, the TDL was noted to increase with the increase in nanobubble concentration and decrease with an increase in impact velocity for a particular nanobubble concentration. Finally, we elucidated the overall boiling behaviors of nanobubble-dispersed fluid droplets with the substrate temperature in the range of 150-400 °C against varied impact We through a detailed phase map. These findings may be useful for further exploration of the use of nanobubble-dispersed fluids in high heat flux and high-temperature-related problems and devices
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Sharma, Harsh
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nirmalkar, Neelkanth
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dhar, Purbarun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Samanta, Devranjan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 38(2022), 51 vom: 27. Dez., Seite 15925-15936
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:38
|g year:2022
|g number:51
|g day:27
|g month:12
|g pages:15925-15936
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.2c01891
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 38
|j 2022
|e 51
|b 27
|c 12
|h 15925-15936
|