COVID-19 related TV news and stock returns : Evidence from major US TV stations

© 2022 Board of Trustees of the University of Illinois. Published by Elsevier Inc. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:The Quarterly review of economics and finance : journal of the Midwest Economics Association. - 1992. - 87(2023) vom: 05. Feb., Seite 95-109
1. Verfasser: Möller, Rouven (VerfasserIn)
Weitere Verfasser: Reichmann, Doron
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The Quarterly review of economics and finance : journal of the Midwest Economics Association
Schlagworte:News COVID-19 TV news Natural language processing Stock returns Topic modeling
LEADER 01000caa a22002652 4500
001 NLM350190917
003 DE-627
005 20240912231943.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.qref.2022.11.007  |2 doi 
028 5 2 |a pubmed24n1531.xml 
035 |a (DE-627)NLM350190917 
035 |a (NLM)36506906 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Möller, Rouven  |e verfasserin  |4 aut 
245 1 0 |a COVID-19 related TV news and stock returns  |b Evidence from major US TV stations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Board of Trustees of the University of Illinois. Published by Elsevier Inc. All rights reserved. 
520 |a We investigate a novel dataset of more than half a million 15 seconds transcribed audio snippets containing COVID-19 mentions from major US TV stations throughout 2020. Using the Latent Dirichlet Allocation (LDA), an unsupervised machine learning algorithm, we identify seven COVID-19 related topics discussed in US TV news. We find that several topics identified by the LDA predict significant and economically meaningful market reactions in the next day, even after controlling for the general TV tone derived from a field-specific COVID-19 tone dictionary. Our results suggest that COVID-19 related TV content had nonnegligible effects on financial markets during the pandemic 
650 4 |a News 
650 4 |a COVID-19 TV news 
650 4 |a Natural language processing 
650 4 |a Stock returns 
650 4 |a Topic modeling 
700 1 |a Reichmann, Doron  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Quarterly review of economics and finance : journal of the Midwest Economics Association  |d 1992  |g 87(2023) vom: 05. Feb., Seite 95-109  |w (DE-627)NLM098220829  |x 1062-9769  |7 nnns 
773 1 8 |g volume:87  |g year:2023  |g day:05  |g month:02  |g pages:95-109 
856 4 0 |u http://dx.doi.org/10.1016/j.qref.2022.11.007  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 87  |j 2023  |b 05  |c 02  |h 95-109