Direct balancing of lipid mobilization and reactive oxygen species production by the epoxidation of fatty acid catalyzed by a cytochrome P450 protein during seed germination

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 237(2023), 6 vom: 03. März, Seite 2104-2117
1. Verfasser: Xiang, Fuyou (VerfasserIn)
Weitere Verfasser: Liu, Wen-Cheng, Liu, Xin, Song, Yuwei, Zhang, Yu, Zhu, Xiaojing, Wang, Pengtao, Guo, Siyi, Song, Chun-Peng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't CYP77A4 fatty acids oxidative stress reactive oxygen species seed germination β-oxidation Reactive Oxygen Species Fatty Acids mehr... Cytochrome P-450 Enzyme System 9035-51-2
Beschreibung
Zusammenfassung:© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Fatty acid (FA) β-oxidation provides energy for oil seed germination but also produces massive byproduct reactive oxygen species (ROS), posing potential oxidative damage to plant cells. How plants overcome the contradiction between energy supply and ROS production during seed germination remains unclear. In this study, we identified an Arabidopsis mvs1 (methylviologen-sensitive) mutant that was hypersensitive to ROS and caused by a missense mutation (G1349 substituted as A) of a cytochrome P450 gene, CYP77A4. CYP77A4 was highly expressed in germinating seedling cotyledons, and its protein is localized in the endoplasmic reticulum. As CYP77A4 catalyzes the epoxidation of unsaturated FA, disruption of CYP77A4 resulted in increased unsaturated FA abundance and over accumulated ROS in the mvs1 mutant. Consistently, scavenging excess ROS or blocking FA β-oxidation could repress the ROS overaccumulation and hypersensitivity in the mvs1 mutant. Furthermore, H2 O2 transcriptionally upregulated CYP77A4 expression and post-translationally modified CYP77A4 by sulfenylating its Cysteine-456, which is necessary for CYP77A4's role in modulating FA abundance and ROS production. Together, our study illustrates that CYP77A4 mediates direct balancing of lipid mobilization and ROS production by the epoxidation of FA during seed germination
Beschreibung:Date Completed 22.02.2023
Date Revised 22.02.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.18669