Nanomechanical Stability of Laterally Heterogeneous Films of Corrosion Inhibitor Molecules Obtained by Microcontact Printing on Au Model Substrates
Self-assembled monolayers of corrosion inhibitors of the mercaptobenzimidazole family, SH-BimH, SH-BimH-5NH2, and SH-BimH-5OMe, were formed on template-stripped ultraflat Au surfaces using microcontact printing, and subsequently analyzed using X-ray photoelectron spectroscopy (XPS), atomic force mic...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 50 vom: 20. Dez., Seite 15614-15621 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Self-assembled monolayers of corrosion inhibitors of the mercaptobenzimidazole family, SH-BimH, SH-BimH-5NH2, and SH-BimH-5OMe, were formed on template-stripped ultraflat Au surfaces using microcontact printing, and subsequently analyzed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and AFM-force spectroscopy (AFM-FS) using a quantitative imaging (QI) mode. Printing of all used inhibitor molecules resulted in clear patterns and in slightly more compact films compared to immersion. The stability of the monolayers is further probed by AFM-FS. Adhesion values of laterally heterogeneous inhibitor-modified surfaces compared to bare Au surfaces, nonpatterned areas, and fully covered surfaces are analyzed and discussed. Microcontact printing confers a superior nanomechanical stability to imidazole-modified films of the printed surface patches as compared to homogeneously covered surfaces by immersion into the inhibitor solution |
---|---|
Beschreibung: | Date Completed 20.12.2022 Date Revised 22.12.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c02276 |