Breaking the Electronic Conductivity Bottleneck of Manganese Oxide Family for High-Power Fluorinated Graphite Composite Cathode by Ligand-Field High-Dimensional Constraining Strategy

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 8 vom: 09. Feb., Seite e2209210
1. Verfasser: Yu, Jia (VerfasserIn)
Weitere Verfasser: Wang, Da, Wang, Guoxin, Cui, Yanhua, Shi, Siqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electronic conductivities fluorinated graphite high-dimensional constraining ligand-field stacking topology transition metal oxides
LEADER 01000naa a22002652 4500
001 NLM349951527
003 DE-627
005 20231226043842.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202209210  |2 doi 
028 5 2 |a pubmed24n1166.xml 
035 |a (DE-627)NLM349951527 
035 |a (NLM)36482825 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Jia  |e verfasserin  |4 aut 
245 1 0 |a Breaking the Electronic Conductivity Bottleneck of Manganese Oxide Family for High-Power Fluorinated Graphite Composite Cathode by Ligand-Field High-Dimensional Constraining Strategy 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.02.2023 
500 |a Date Revised 24.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Primary lithium fluorinated graphite (Li/CFx ) batteries with superior energy density are an indispensable energy supply for multiple fields but suffer from sluggish reaction kinetics of the CFx cathode. Designing composite cathodes emerges as a solution to this problem. Despite the optimal composite component for CFx , the manganese oxide family represented by MnO2 is still faced with an intrinsic electronic conductivity bottleneck, which severely limits the power density of the composite cathode. Here, a cation-induced high-dimensional constraining strategy from the perspective of ligand-field stacking structure topological design, which breaks the molecular orbital hybridization of pristine semiconductive oxides to transform them into the high-conductivity metallic state while competitively maintaining structural stability, is proposed. Through first-principles phase diagram calculations, mixed-valent Mn5 O8 ( Mn 2 2 + Mn 3 4 + O 8 ${\rm{Mn}}_2^{2 + }{\rm{Mn}}_3^{4 + }{{\rm{O}}_8}$ ) is explored as an ideal high-dimensional constraining material with satisfied conductivity and large-scale production feasibility. Experiments demonstrate that the as-proposed CFx   Mn5 O8 composite cathode achieves 2.36 times the power density (11399 W kg-1 ) of pristine CFx and a higher CFx conversion ratio (86%). Such a high-dimensional field-constraining strategy is rooted in the established four-quadrant electronic structure tuning framework, which fundamentally changes the orbital symmetry under the ligand field to overcome the common conductivity challenge of wide transition metal oxide materials 
650 4 |a Journal Article 
650 4 |a electronic conductivities 
650 4 |a fluorinated graphite 
650 4 |a high-dimensional constraining 
650 4 |a ligand-field stacking topology 
650 4 |a transition metal oxides 
700 1 |a Wang, Da  |e verfasserin  |4 aut 
700 1 |a Wang, Guoxin  |e verfasserin  |4 aut 
700 1 |a Cui, Yanhua  |e verfasserin  |4 aut 
700 1 |a Shi, Siqi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 8 vom: 09. Feb., Seite e2209210  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:8  |g day:09  |g month:02  |g pages:e2209210 
856 4 0 |u http://dx.doi.org/10.1002/adma.202209210  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 8  |b 09  |c 02  |h e2209210