Identification of the Origin of Ultralow Dark Currents in Organic Photodiodes
© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 8 vom: 25. Feb., Seite e2209598 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article bulk-heterojunction dark current organic photodiodes organic semiconductors |
Zusammenfassung: | © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. Organic bulk heterojunction photodiodes (OPDs) attract attention for sensing and imaging. Their detectivity is typically limited by a substantial reverse bias dark current density (Jd ). Recently, using thermal admittance or spectral photocurrent measurements, Jd has been attributed to thermal charge generation mediated by mid-gap states. Here, the temperature dependence of Jd in state-of-the-art OPDs is reported with Jd down to 10-9 mA cm-2 at -0.5 V bias. For a variety of donor-acceptor bulk-heterojunction blends it is found that the thermal activation energy of Jd is lower than the effective bandgap of the blends, by ca. 0.3 to 0.5 eV, but higher than expected for mid-gap states. Ultra-sensitive sub-bandgap photocurrent spectroscopy reveals that the minimum photon energy for optical charge generation in OPDs correlates with the dark current thermal activation energy. The dark current in OPDs is attributed to thermal charge generation at the donor-acceptor interface mediated by intra-gap states near the band edges |
---|---|
Beschreibung: | Date Completed 24.02.2023 Date Revised 24.02.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202209598 |