A 3D Framework with Li3 N-Li2 S Solid Electrolyte Interphase and Fast Ion Transfer Channels for a Stabilized Lithium-Metal Anode

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 8 vom: 09. Feb., Seite e2209028
1. Verfasser: Ni, Shuyan (VerfasserIn)
Weitere Verfasser: Zhang, Mengtian, Li, Chuang, Gao, Runhua, Sheng, Jinzhi, Wu, Xin, Zhou, Guangmin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D printing graphene oxide ion transfer channels lithium-metal anodes solid electrolyte interphase
LEADER 01000naa a22002652 4500
001 NLM349945942
003 DE-627
005 20231226043834.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202209028  |2 doi 
028 5 2 |a pubmed24n1166.xml 
035 |a (DE-627)NLM349945942 
035 |a (NLM)36482265 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ni, Shuyan  |e verfasserin  |4 aut 
245 1 2 |a A 3D Framework with Li3 N-Li2 S Solid Electrolyte Interphase and Fast Ion Transfer Channels for a Stabilized Lithium-Metal Anode 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.02.2023 
500 |a Date Revised 24.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a The Li-metal anode has been recognized as the most promising anode for its high theoretical capacity and low reduction potential. However, the major drawbacks of Li metal, such as high reactivity and large volume expansion, can lead to dendrite growth and solid electrolyte interface (SEI) fracture. An in situ artificial inorganic SEI layer, consisting of lithium nitride and lithium sulfide, is herein reported to address the dendrite growth issues. Porous graphene oxide films are doped with sulfur and nitrogen (denoted as SNGO) to work as an effective lithium host. The SNGO film enables the in situ formation of an inorganic-rich SEI layer, which facilitates the transport of Li-ions, improves SEI mechanical strength, and avoids SEI fracture. In addition, COMSOL simulation results reveal that the microchannels fabricated by the 3D printing technique further shorten the Li-ion transfer pathways and homogenize heat and stress distribution in the batteries. As a result, the assembled anode shows low capacity fading of 0.1% per cycle at 2 C rate with the sulfur cathode. In addition, the high lithium utilization of the SNGO host enables the anode to provide a stable capacity at low negative/positive electrode ratios under 3 in LiS batteries 
650 4 |a Journal Article 
650 4 |a 3D printing 
650 4 |a graphene oxide 
650 4 |a ion transfer channels 
650 4 |a lithium-metal anodes 
650 4 |a solid electrolyte interphase 
700 1 |a Zhang, Mengtian  |e verfasserin  |4 aut 
700 1 |a Li, Chuang  |e verfasserin  |4 aut 
700 1 |a Gao, Runhua  |e verfasserin  |4 aut 
700 1 |a Sheng, Jinzhi  |e verfasserin  |4 aut 
700 1 |a Wu, Xin  |e verfasserin  |4 aut 
700 1 |a Zhou, Guangmin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 8 vom: 09. Feb., Seite e2209028  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:8  |g day:09  |g month:02  |g pages:e2209028 
856 4 0 |u http://dx.doi.org/10.1002/adma.202209028  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 8  |b 09  |c 02  |h e2209028