Observation of Multi-Directional Energy Transfer in a Hybrid Plasmonic-Excitonic Nanostructure

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 9 vom: 08. März, Seite e2209100
1. Verfasser: Pincelli, Tommaso (VerfasserIn)
Weitere Verfasser: Vasileiadis, Thomas, Dong, Shuo, Beaulieu, Samuel, Dendzik, Maciej, Zahn, Daniela, Lee, Sang-Eun, Seiler, Hélène, Qi, Yingpeng, Xian, R Patrick, Maklar, Julian, Coy, Emerson, Mueller, Niclas S, Okamura, Yu, Reich, Stephanie, Wolf, Martin, Rettig, Laurenz, Ernstorfer, Ralph
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D semiconductors femtosecond electron diffraction hybrid plasmonics interfacial charge transfer light-matter interactions
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Hybrid plasmonic devices involve a nanostructured metal supporting localized surface plasmons to amplify light-matter interaction, and a non-plasmonic material to functionalize charge excitations. Application-relevant epitaxial heterostructures, however, give rise to ballistic ultrafast dynamics that challenge the conventional semiclassical understanding of unidirectional nanometal-to-substrate energy transfer. Epitaxial Au nanoislands are studied on WSe2 with time- and angle-resolved photoemission spectroscopy and femtosecond electron diffraction: this combination of techniques resolves material, energy, and momentum of charge-carriers and phonons excited in the heterostructure. A strong non-linear plasmon-exciton interaction that transfers the energy of sub-bandgap photons very efficiently to the semiconductor is observed, leaving the metal cold until non-radiative exciton recombination heats the nanoparticles on hundreds of femtoseconds timescales. The results resolve a multi-directional energy exchange on timescales shorter than the electronic thermalization of the nanometal. Electron-phonon coupling and diffusive charge-transfer determine the subsequent energy flow. This complex dynamics opens perspectives for optoelectronic and photocatalytic applications, while providing a constraining experimental testbed for state-of-the-art modelling
Beschreibung:Date Completed 02.03.2023
Date Revised 02.03.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202209100