Tuning the C1 /C2 Selectivity of Electrochemical CO2 Reduction on Cu-CeO2 Nanorods by Oxidation State Control
© 2022 Wiley-VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 8 vom: 15. Feb., Seite e2208996 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2023
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article atom probe tomography copper-ceria electrochemical CO2 reduction gas diffusion electrodes interface |
| Zusammenfassung: | © 2022 Wiley-VCH GmbH. Ceria (CeO2 ) is one of the most extensively used rare earth oxides. Recently, it has been used as a support material for metal catalysts for electrochemical energy conversion. However, to date, the nature of metal/CeO2 interfaces and their impact on electrochemical processes remains unclear. Here, a Cu-CeO2 nanorod electrochemical CO2 reduction catalyst is presented. Using operando analysis and computational techniques, it is found that, on the application of a reductive electrochemical potential, Cu undergoes an abrupt change in solubility in the ceria matrix converting from less stable randomly dissolved single atomic Cu2+ ions to (Cu0 ,Cu1+ ) nanoclusters. Unlike single atomic Cu, which produces C1 products as the main product during electrochemical CO2 reduction, the coexistence of (Cu0 ,Cu1+ ) clusters lowers the energy barrier for C-C coupling and enables the selective production of C2+ hydrocarbons. As a result, the coexistence of (Cu0 ,Cu1+ ) in the clusters at the Cu-ceria interface results in a C2+ partial current density/unit Cu weight 27 times that of a corresponding Cu-carbon catalyst under the same conditions |
|---|---|
| Beschreibung: | Date Completed 24.02.2023 Date Revised 24.02.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202208996 |