Deep learning on multi-view sequential data : a survey

© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - 56(2023), 7 vom: 09., Seite 6661-6704
1. Verfasser: Xie, Zhuyang (VerfasserIn)
Weitere Verfasser: Yang, Yan, Zhang, Yiling, Wang, Jie, Du, Shengdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Deep neural networks Multi-view Sequential data Spatio-temporal
LEADER 01000caa a22002652 4500
001 NLM349792763
003 DE-627
005 20240918231852.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-022-10332-z  |2 doi 
028 5 2 |a pubmed24n1538.xml 
035 |a (DE-627)NLM349792763 
035 |a (NLM)36466765 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Zhuyang  |e verfasserin  |4 aut 
245 1 0 |a Deep learning on multi-view sequential data  |b a survey 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a With the progress of human daily interaction activities and the development of industrial society, a large amount of media data and sensor data become accessible. Humans collect these multi-source data in chronological order, called multi-view sequential data (MvSD). MvSD has numerous potential application domains, including intelligent transportation, climate science, health care, public safety and multimedia, etc. However, as the volume and scale of MvSD increases, the traditional machine learning methods become difficult to withstand such large-scale data, and it is no longer appropriate to use hand-craft features to represent these complex data. In addition, there is no general framework in the process of mining multi-view relationships and integrating multi-view information. In this paper, We first introduce four common data types that constitute MvSD, including point data, sequence data, graph data, and raster data. Then, we summarize the technical challenges of MvSD. Subsequently, we review the recent progress in deep learning technology applied to MvSD. Meanwhile, we discuss how the network represents and learns features of MvSD. Finally, we summarize the applications of MvSD in different domains and give potential research directions 
650 4 |a Journal Article 
650 4 |a Deep neural networks 
650 4 |a Multi-view 
650 4 |a Sequential data 
650 4 |a Spatio-temporal 
700 1 |a Yang, Yan  |e verfasserin  |4 aut 
700 1 |a Zhang, Yiling  |e verfasserin  |4 aut 
700 1 |a Wang, Jie  |e verfasserin  |4 aut 
700 1 |a Du, Shengdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g 56(2023), 7 vom: 09., Seite 6661-6704  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnns 
773 1 8 |g volume:56  |g year:2023  |g number:7  |g day:09  |g pages:6661-6704 
856 4 0 |u http://dx.doi.org/10.1007/s10462-022-10332-z  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 56  |j 2023  |e 7  |b 09  |h 6661-6704