Cropland intensification mediates the radiative balance of greenhouse gas emissions and soil carbon sequestration in maize systems of sub-Saharan Africa

© 2022 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 6 vom: 03. März, Seite 1514-1529
1. Verfasser: Zheng, Jinsen (VerfasserIn)
Weitere Verfasser: Canarini, Alberto, Fujii, Kazumichi, Mmari, William N, Kilasara, Method M, Funakawa, Shinya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article N fertilizer crop residue global warming potential greenhouse gas emission soil C sequestration soil type sub-Saharan Africa Greenhouse Gases Soil mehr... Carbon 7440-44-0 Carbon Dioxide 142M471B3J Nitrogen N762921K75 Nitrous Oxide K50XQU1029
LEADER 01000naa a22002652 4500
001 NLM34974713X
003 DE-627
005 20231226043348.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16550  |2 doi 
028 5 2 |a pubmed24n1165.xml 
035 |a (DE-627)NLM34974713X 
035 |a (NLM)36462165 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Jinsen  |e verfasserin  |4 aut 
245 1 0 |a Cropland intensification mediates the radiative balance of greenhouse gas emissions and soil carbon sequestration in maize systems of sub-Saharan Africa 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.02.2023 
500 |a Date Revised 26.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 John Wiley & Sons Ltd. 
520 |a Sub-Saharan Africa (SSA) must undertake proper cropland intensification for higher crop yields while minimizing climate impacts. Unfortunately, no studies have simultaneously quantified greenhouse gas (GHG; CO2 , CH4 , and N2 O) emissions and soil organic carbon (SOC) change in SSA croplands, leaving it a blind spot in the accounting of global warming potential (GWP). Here, based on 2-year field monitoring of soil emissions of CO2 , CH4 , and N2 O, as well as SOC changes in two contrasting soil types (sandy vs. clayey), we provided the first, full accounting of GWP for maize systems in response to cropland intensifications (increasing nitrogen rates and in combination with crop residue return) in SSA. To corroborate our field observations on SOC change (i.e., 2-year, a short duration), we implemented a process-oriented model parameterized with field data to simulate SOC dynamic over time. We further tested the generality of our findings by including a literature synthesis of SOC change across maize-based systems in SSA. We found that nitrogen application reduced SOC loss, likely through increased biomass yield and consequently belowground carbon allocation. Residue return switched the direction of SOC change from loss to gain; such a benefit (SOC sequestration) was not compromised by CH4 emissions (negligible) nor outweighed by the amplified N2 O emissions, and contributed to negative net GWP. Overall, we show encouraging results that, combining residue and fertilizer-nitrogen input allowed for sequestering 82-284 kg of CO2 -eq per Mg of maize grain produced across two soils. All analyses pointed to an advantage of sandy over clayey soils in achieving higher SOC sequestration targets, and thus call for a re-evaluation on the potential of sandy soils in SOC sequestration across SSA croplands. Our findings carry important implications for developing viable intensification practices for SSA croplands in mitigating climate change while securing food production 
650 4 |a Journal Article 
650 4 |a N fertilizer 
650 4 |a crop residue 
650 4 |a global warming potential 
650 4 |a greenhouse gas emission 
650 4 |a soil C sequestration 
650 4 |a soil type 
650 4 |a sub-Saharan Africa 
650 7 |a Greenhouse Gases  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
650 7 |a Nitrous Oxide  |2 NLM 
650 7 |a K50XQU1029  |2 NLM 
700 1 |a Canarini, Alberto  |e verfasserin  |4 aut 
700 1 |a Fujii, Kazumichi  |e verfasserin  |4 aut 
700 1 |a Mmari, William N  |e verfasserin  |4 aut 
700 1 |a Kilasara, Method M  |e verfasserin  |4 aut 
700 1 |a Funakawa, Shinya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 29(2023), 6 vom: 03. März, Seite 1514-1529  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:6  |g day:03  |g month:03  |g pages:1514-1529 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16550  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 6  |b 03  |c 03  |h 1514-1529