|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM349721580 |
003 |
DE-627 |
005 |
20231226043311.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2022.3226276
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1165.xml
|
035 |
|
|
|a (DE-627)NLM349721580
|
035 |
|
|
|a (NLM)36459605
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Jun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Rank-One Prior
|b Real-Time Scene Recovery
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.06.2023
|
500 |
|
|
|a Date Revised 06.06.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Scene recovery is a fundamental imaging task with several practical applications, including video surveillance and autonomous vehicles, etc. In this article, we provide a new real-time scene recovery framework to restore degraded images under different weather/imaging conditions, such as underwater, sand dust and haze. A degraded image can actually be seen as a superimposition of a clear image with the same color imaging environment (underwater, sand or haze, etc.). Mathematically, we can introduce a rank-one matrix to characterize this phenomenon, i.e., rank-one prior (ROP). Using the prior, a direct method with the complexity O(N) is derived for real-time recovery. For general cases, we develop ROP + to further improve the recovery performance. Comprehensive experiments of the scene recovery illustrate that our method outperforms competitively several state-of-the-art imaging methods in terms of efficiency and robustness
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Ryan Wen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Jianing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zeng, Tieyong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 45(2023), 7 vom: 02. Juli, Seite 8845-8860
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:45
|g year:2023
|g number:7
|g day:02
|g month:07
|g pages:8845-8860
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2022.3226276
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2023
|e 7
|b 02
|c 07
|h 8845-8860
|