Sequential Order-Aware Coding-Based Robust Subspace Clustering for Human Action Recognition in Untrimmed Videos

Human action recognition (HAR) is one of most important tasks in video analysis. Since video clips distributed on networks are usually untrimmed, it is required to accurately segment a given untrimmed video into a set of action segments for HAR. As an unsupervised temporal segmentation technology, s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 02., Seite 13-28
1. Verfasser: Zhou, Zhili (VerfasserIn)
Weitere Verfasser: Ding, Chun, Li, Jin, Mohammadi, Eman, Liu, Guangcan, Yang, Yimin, Wu, Q M Jonathan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM34972153X
003 DE-627
005 20231226043311.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3224877  |2 doi 
028 5 2 |a pubmed24n1165.xml 
035 |a (DE-627)NLM34972153X 
035 |a (NLM)36459602 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Zhili  |e verfasserin  |4 aut 
245 1 0 |a Sequential Order-Aware Coding-Based Robust Subspace Clustering for Human Action Recognition in Untrimmed Videos 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Human action recognition (HAR) is one of most important tasks in video analysis. Since video clips distributed on networks are usually untrimmed, it is required to accurately segment a given untrimmed video into a set of action segments for HAR. As an unsupervised temporal segmentation technology, subspace clustering learns the codes from each video to construct an affinity graph, and then cuts the affinity graph to cluster the video into a set of action segments. However, most of the existing subspace clustering schemes not only ignore the sequential information of frames in code learning, but also the negative effects of noises when cutting the affinity graph, which lead to inferior performance. To address these issues, we propose a sequential order-aware coding-based robust subspace clustering (SOAC-RSC) scheme for HAR. By feeding the motion features of video frames into multi-layer neural networks, two expressive code matrices are learned in a sequential order-aware manner from unconstrained and constrained videos, respectively, to construct the corresponding affinity graphs. Then, with the consideration of the existence of noise effects, a simple yet robust cutting algorithm is proposed to cut the constructed affinity graphs to accurately obtain the action segments for HAR. The extensive experiments demonstrate the proposed SOAC-RSC scheme achieves the state-of-the-art performance on the datasets of Keck Gesture and Weizmann, and provides competitive performance on the other 6 public datasets such as UCF101 and URADL for HAR task, compared to the recent related approaches 
650 4 |a Journal Article 
700 1 |a Ding, Chun  |e verfasserin  |4 aut 
700 1 |a Li, Jin  |e verfasserin  |4 aut 
700 1 |a Mohammadi, Eman  |e verfasserin  |4 aut 
700 1 |a Liu, Guangcan  |e verfasserin  |4 aut 
700 1 |a Yang, Yimin  |e verfasserin  |4 aut 
700 1 |a Wu, Q M Jonathan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 02., Seite 13-28  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:02  |g pages:13-28 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3224877  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 02  |h 13-28