3D Bioelectronics with a Remodellable Matrix for Long-Term Tissue Integration and Recording

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 8 vom: 14. Feb., Seite e2207847
Auteur principal: Boys, Alexander J (Auteur)
Autres auteurs: Carnicer-Lombarte, Alejandro, Güemes-Gonzalez, Amparo, van Niekerk, Douglas C, Hilton, Sam, Barone, Damiano G, Proctor, Christopher M, Owens, Róisín M, Malliaras, George G
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article bioelectronics electromyography foreign body responses regenerative medicines
Description
Résumé:© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Bioelectronics hold the key for understanding and treating disease. However, achieving stable, long-term interfaces between electronics and the body remains a challenge. Implantation of a bioelectronic device typically initiates a foreign body response, which can limit long-term recording and stimulation efficacy. Techniques from regenerative medicine have shown a high propensity for promoting integration of implants with surrounding tissue, but these implants lack the capabilities for the sophisticated recording and actuation afforded by electronics. Combining these two fields can achieve the best of both worlds. Here, the construction of a hybrid implant system for creating long-term interfaces with tissue is shown. Implants are created by combining a microelectrode array with a bioresorbable and remodellable gel. These implants are shown to produce a minimal foreign body response when placed into musculature, allowing one to record long-term electromyographic signals with high spatial resolution. This device platform drives the possibility for a new generation of implantable electronics for long-term interfacing
Description:Date Completed 27.02.2023
Date Revised 18.10.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202207847