Surfactant-Assisted Sulfonated Covalent Organic Nanosheets : Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting

© 2022 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 6 vom: 01. Feb., Seite e2208640
Auteur principal: Zhou, Shengyang (Auteur)
Autres auteurs: Hu, Yuhao, Xin, Weiwen, Fu, Lin, Lin, Xiangbin, Yang, Linsen, Hou, Shuhua, Kong, Xiang-Yu, Jiang, Lei, Wen, Liping
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article extrinsic surface charges ion transport nanofluidic channels salinity-gradient energy conversion sulfonated covalent organic nanosheets
Description
Résumé:© 2022 Wiley-VCH GmbH.
Charge-governed ion transport is the vital property of nanofluidic channels for salinity-gradient energy harvesting and other electrochemical energy conversion technologies. 2D nanofluidic channels constructed by nanosheets exhibit great superiority in ion selectivity, but a high ion transport rate remains challenging due to the insufficiency of intrinsic surface charge density in nanoconfinement. Herein, extrinsic surface charge into nanofluidic channels composed of surfactant-assisted sulfonated covalent organic nanosheets (SCONs), which enable tunable ion transport behaviors, is demonstrated. The polar moiety of surfactant is embedded in SCONs to adjust in-plane surface charges, and the aggregation of nonpolar moiety results in the sol-to-gel transformation of SCON solution for membrane fabrication. The combination endows SCON/surfactant membranes with considerable water-resistance, and the designable extrinsic charges promise fast ion transport and high ion selectivity. Additionally, the SCON/surfactant membrane, serving as a power generator, exhibits huge potential in harvesting salinity-gradient energy where corresponding output power density can reach up to 9.08 W m-2 under a 50-fold salinity gradient (0.5 m NaCl|0.01 m NaCl). The approach to extrinsic surface charge provides new and promising insight into regulating ion transport behaviors
Description:Date Completed 10.02.2023
Date Revised 10.02.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202208640