Surfactant-Assisted Sulfonated Covalent Organic Nanosheets : Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting
© 2022 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 6 vom: 01. Feb., Seite e2208640 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2023
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article extrinsic surface charges ion transport nanofluidic channels salinity-gradient energy conversion sulfonated covalent organic nanosheets |
Résumé: | © 2022 Wiley-VCH GmbH. Charge-governed ion transport is the vital property of nanofluidic channels for salinity-gradient energy harvesting and other electrochemical energy conversion technologies. 2D nanofluidic channels constructed by nanosheets exhibit great superiority in ion selectivity, but a high ion transport rate remains challenging due to the insufficiency of intrinsic surface charge density in nanoconfinement. Herein, extrinsic surface charge into nanofluidic channels composed of surfactant-assisted sulfonated covalent organic nanosheets (SCONs), which enable tunable ion transport behaviors, is demonstrated. The polar moiety of surfactant is embedded in SCONs to adjust in-plane surface charges, and the aggregation of nonpolar moiety results in the sol-to-gel transformation of SCON solution for membrane fabrication. The combination endows SCON/surfactant membranes with considerable water-resistance, and the designable extrinsic charges promise fast ion transport and high ion selectivity. Additionally, the SCON/surfactant membrane, serving as a power generator, exhibits huge potential in harvesting salinity-gradient energy where corresponding output power density can reach up to 9.08 W m-2 under a 50-fold salinity gradient (0.5 m NaCl|0.01 m NaCl). The approach to extrinsic surface charge provides new and promising insight into regulating ion transport behaviors |
---|---|
Description: | Date Completed 10.02.2023 Date Revised 10.02.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202208640 |