Sparse Tensor-Based Multiscale Representation for Point Cloud Geometry Compression

This study develops a unified Point Cloud Geometry (PCG) compression method through the processing of multiscale sparse tensor-based voxelized PCG. We call this compression method SparsePCGC. The proposed SparsePCGC is a low complexity solution because it only performs the convolutions on sparsely-d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 01. Juli, Seite 9055-9071
1. Verfasser: Wang, Jianqiang (VerfasserIn)
Weitere Verfasser: Ding, Dandan, Li, Zhu, Feng, Xiaoxing, Cao, Chuntong, Ma, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM34967714X
003 DE-627
005 20231226043209.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3225816  |2 doi 
028 5 2 |a pubmed24n1165.xml 
035 |a (DE-627)NLM34967714X 
035 |a (NLM)36455091 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jianqiang  |e verfasserin  |4 aut 
245 1 0 |a Sparse Tensor-Based Multiscale Representation for Point Cloud Geometry Compression 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This study develops a unified Point Cloud Geometry (PCG) compression method through the processing of multiscale sparse tensor-based voxelized PCG. We call this compression method SparsePCGC. The proposed SparsePCGC is a low complexity solution because it only performs the convolutions on sparsely-distributed Most-Probable Positively-Occupied Voxels (MP-POV). The multiscale representation also allows us to compress scale-wise MP-POVs by exploiting cross-scale and same-scale correlations extensively and flexibly. The overall compression efficiency highly depends on the accuracy of estimated occupancy probability for each MP-POV. Thus, we first design the Sparse Convolution-based Neural Network (SparseCNN) which stacks sparse convolutions and voxel sampling to best characterize and embed spatial correlations. We then develop the SparseCNN-based Occupancy Probability Approximation (SOPA) model to estimate the occupancy probability either in a single-stage manner only using the cross-scale correlation, or in a multi-stage manner by exploiting stage-wise correlation among same-scale neighbors. Besides, we also suggest the SparseCNN based Local Neighborhood Embedding (SLNE) to aggregate local variations as spatial priors in feature attribute to improve the SOPA. Our unified approach not only shows state-of-the-art performance in both lossless and lossy compression modes across a variety of datasets including the dense object PCGs (8iVFB, Owlii, MUVB) and sparse LiDAR PCGs (KITTI, Ford) when compared with standardized MPEG G-PCC and other prevalent learning-based schemes, but also has low complexity which is attractive to practical applications 
650 4 |a Journal Article 
700 1 |a Ding, Dandan  |e verfasserin  |4 aut 
700 1 |a Li, Zhu  |e verfasserin  |4 aut 
700 1 |a Feng, Xiaoxing  |e verfasserin  |4 aut 
700 1 |a Cao, Chuntong  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 01. Juli, Seite 9055-9071  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:01  |g month:07  |g pages:9055-9071 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3225816  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 01  |c 07  |h 9055-9071