Lipidated Lysine and Fatty Acids Assemble into Protocellular Membranes to Assist Regioselective Peptide Formation : Correlation to the Natural Selection of Lysine over Nonproteinogenic Lower Analogues

The self-assembly of prebiotically plausible amphiphiles (fatty acids) to form a bilayer membrane for compartmentalization is an important factor during protocellular evolution. Such fatty acid-based membranes assemble at relatively high concentrations, and they lack robust stability. We have demons...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 49 vom: 13. Dez., Seite 15422-15432
1. Verfasser: Hazra, Bibhas (VerfasserIn)
Weitere Verfasser: Mondal, Anoy, Prasad, Mahesh, Gayen, Soumajit, Mandal, Raki, Sardar, Avijit, Tarafdar, Pradip K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Lysine K3Z4F929H6 Fatty Acids Amino Acids Peptides
Beschreibung
Zusammenfassung:The self-assembly of prebiotically plausible amphiphiles (fatty acids) to form a bilayer membrane for compartmentalization is an important factor during protocellular evolution. Such fatty acid-based membranes assemble at relatively high concentrations, and they lack robust stability. We have demonstrated that a mixture of lipidated lysine (cationic) and prebiotic fatty acids (decanoic acid, anionic) can form protocellular membranes (amino acid-based membranes) at low concentrations via electrostatic, hydrogen bonding, and hydrophobic interactions. The formation of vesicular membranes was characterized by dynamic light scattering (DLS), pyrene and Nile Red partitioning, cryo-transmission electron microscopy (TEM) images, and glucose encapsulation studies. The lipidated nonproteinogenic analogues of lysine (Lys), such as ornithine (Orn) and 2,4-diaminobutyric acid (Dab), also form membranes with decanoate (DA). Time-dependent turbidimetric and 1H NMR studies suggested that the Lys-based membrane is more stable than the membranes prepared from nonproteinogenic lower analogues. The Lys-based membrane embeds a model acylating agent (aminoacyl-tRNA mimic) and facilitates the colocalization of substrates to support regioselective peptide formation via the α-amine of Lys. These membranes thereby assist peptide formation and control the positioning of the reactants (model acylating agent and -NH2 of amino acids) to initiate biologically relevant reactions during early evolution
Beschreibung:Date Completed 14.12.2022
Date Revised 06.01.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c02849