|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM349572690 |
003 |
DE-627 |
005 |
20231226042943.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.2c02404
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1165.xml
|
035 |
|
|
|a (DE-627)NLM349572690
|
035 |
|
|
|a (NLM)36444415
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ma, Ang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Substrate-Free Fabrication of Single-Crystal Two-Dimensional Gold Nanoplates for Catalytic Application
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.12.2022
|
500 |
|
|
|a Date Revised 21.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Two-dimensional (2D) gold nanoplates (AuNPLs) have shown potential in catalysis, photonics, electronics, sensing, and biomedicine fields due to their high aspect ratio, fascinating surface chemistry, and quantum-size effect. Therefore, the synthesis of substrate-free, size-controlled single-crystal gold (Au) nanoplates is highly desirable for the development of catalysis and optical near-field enhancement applications. EDTA and hydroxide anions were used in this study to stimulate the formation of microscale single-crystal gold nanoplates under hydrothermal conditions. The reaction temperature, amount of EDTA, and hydroxyl anions all have a significant effect on the morphologies and size distributions of the gold nanoplates. The gold nanoplates had an average side length of between 3 and 11 μm. The application of the microscale single-crystal gold nanoplates as a nanocatalyst proved their excellent catalytic activity and recyclability for the catalysis of 4-nitrophenol to 4-aminophenol, implying that the large-size gold nanoplates were promising in heterogeneous catalysis applications
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Yang, Weiye
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Junqi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 38(2022), 49 vom: 13. Dez., Seite 15263-15271
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:38
|g year:2022
|g number:49
|g day:13
|g month:12
|g pages:15263-15271
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.2c02404
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 38
|j 2022
|e 49
|b 13
|c 12
|h 15263-15271
|