Insights into Palladium Deactivation during Advanced Oxidation Processes

© 2022 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 34(2022), 19 vom: 11. Okt., Seite 8760-8768
1. Verfasser: Pinos-Vélez, Verónica (VerfasserIn)
Weitere Verfasser: Osegueda, Oscar, Crivoi, Dana Georgiana, Llorca, Jordi, García-García, F Javier, Álvarez, Mayra G, Medina, Francesc, Dafinov, Anton
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2022 American Chemical Society.
A key step in creating efficient and long-lasting catalysts is understanding their deactivation mechanism(s). On this basis, the behavior of a series of Pd/corundum materials during several hydrogen adsorption/desorption cycles was studied using temperature-programmed desorption coupled with mass spectrometry and aberration-corrected transmission electron microscopy. The materials, prepared by impregnation and by sputtering, presented uniform well-dispersed Pd nanoparticles. In addition, single atoms and small clusters of Pd were only detected in the materials prepared by impregnation. Upon exposure to hydrogen, the Pd nanoparticles smaller than 2 nm and the single atoms did not present any change, while the larger ones presented a core-shell morphology, where the core was Pd and the shell was PdH x . The results suggest that the long-term activity of the materials prepared by impregnation can be attributed solely to the presence of small clusters and single atoms of Pd
Beschreibung:Date Revised 02.12.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.2c01951