Interpretable by Design : Learning Predictors by Composing Interpretable Queries
There is a growing concern about typically opaque decision-making with high-performance machine learning algorithms. Providing an explanation of the reasoning process in domain-specific terms can be crucial for adoption in risk-sensitive domains such as healthcare. We argue that machine learning alg...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 28. Juni, Seite 7430-7443
|
1. Verfasser: |
Chattopadhyay, Aditya
(VerfasserIn) |
Weitere Verfasser: |
Slocum, Stewart,
Haeffele, Benjamin D,
Vidal, Rene,
Geman, Donald |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |