PhraseMap : Attention-Based Keyphrases Recommendation for Information Seeking

Many Information Retrieval (IR) approaches have been proposed to extract relevant information from a large corpus. Among these methods, phrase-based retrieval methods have been proven to capture more concrete and concise information than word-based and paragraph-based methods. However, due to the co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 3 vom: 01. Jan., Seite 1787-1802
1. Verfasser: Tu, Yamei (VerfasserIn)
Weitere Verfasser: Qiu, Rui, Wang, Yu-Shuen, Yen, Po-Yin, Shen, Han-Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM349547491
003 DE-627
005 20240131231830.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3225114  |2 doi 
028 5 2 |a pubmed24n1276.xml 
035 |a (DE-627)NLM349547491 
035 |a (NLM)36441879 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tu, Yamei  |e verfasserin  |4 aut 
245 1 0 |a PhraseMap  |b Attention-Based Keyphrases Recommendation for Information Seeking 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many Information Retrieval (IR) approaches have been proposed to extract relevant information from a large corpus. Among these methods, phrase-based retrieval methods have been proven to capture more concrete and concise information than word-based and paragraph-based methods. However, due to the complex relationship among phrases and a lack of proper visual guidance, achieving user-driven interactive information-seeking and retrieval remains challenging. In this study, we present a visual analytic approach for users to seek information from an extensive collection of documents efficiently. The main component of our approach is a PhraseMap, where nodes and edges represent the extracted keyphrases and their relationships, respectively, from a large corpus. To build the PhraseMap, we extract keyphrases from each document and link the phrases according to word attention determined using modern language models, i.e., BERT. As can be imagined, the graph is complex due to the extensive volume of information and the massive amount of relationships. Therefore, we develop a navigation algorithm to facilitate information seeking. It includes (1) a question-answering (QA) model to identify phrases related to users' queries and (2) updating relevant phrases based on users' feedback. To better present the PhraseMap, we introduce a resource-controlled self-organizing map (RC-SOM) to evenly and regularly display phrases on grid cells while expecting phrases with similar semantics to stay close in the visualization. To evaluate our approach, we conducted case studies with three domain experts in diverse literature. The results and feedback demonstrate its effectiveness, usability, and intelligence 
650 4 |a Journal Article 
700 1 |a Qiu, Rui  |e verfasserin  |4 aut 
700 1 |a Wang, Yu-Shuen  |e verfasserin  |4 aut 
700 1 |a Yen, Po-Yin  |e verfasserin  |4 aut 
700 1 |a Shen, Han-Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 3 vom: 01. Jan., Seite 1787-1802  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:3  |g day:01  |g month:01  |g pages:1787-1802 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3225114  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 3  |b 01  |c 01  |h 1787-1802