Mixology of MA1-x EA x PbI3 Hybrid Perovskites : Phase Transitions, Cation Dynamics, and Photoluminescence

© 2022 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 34(2022), 22 vom: 22. Nov., Seite 10104-10112
1. Verfasser: Šimėnas, Mantas (VerfasserIn)
Weitere Verfasser: Balčiu Nas, Sergejus, Ga Gor, Anna, Pienia Żek, Agnieszka, Tolborg, Kasper, Kinka, Martynas, Klimavicius, Vytautas, Svirskas, Šaru Nas, Kalendra, Vidmantas, Ptak, Maciej, Szewczyk, Daria, Herman, Artur P, Kudrawiec, Robert, Sieradzki, Adam, Grigalaitis, Robertas, Walsh, Aron, Ma Czka, Mirosław, Banys, Ju Ras
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2022 American Chemical Society.
Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA1-x EA x PbI3 (x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications
Beschreibung:Date Revised 07.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.2c02807