|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM349522189 |
003 |
DE-627 |
005 |
20231226042832.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.chemmater.2c01102
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1165.xml
|
035 |
|
|
|a (DE-627)NLM349522189
|
035 |
|
|
|a (NLM)36439317
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Barr, Maïssa K S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Solution Atomic Layer Deposition of Smooth, Continuous, Crystalline Metal-Organic Framework Thin Films
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 29.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Published by American Chemical Society.
|
520 |
|
|
|a For the first time, a procedure has been established for the growth of surface-anchored metal-organic framework (SURMOF) copper(II) benzene-1,4-dicarboxylate (Cu-BDC) thin films of thickness control with single molecule accuracy. For this, we exploit the novel method solution atomic layer deposition (sALD). The sALD growth rate has been determined at 4.5 Å per cycle. The compact and dense SURMOF films grown at room temperature by sALD possess a vastly superior film thickness uniformity than those deposited by conventional solution-based techniques, such as dipping and spraying while featuring clear crystallinity from 100 nm thickness. The highly controlled layer-by-layer growth mechanism of sALD proves crucial to prevent unwanted side reactions such as Ostwald ripening or detrimental island growth, ensuring continuous Cu-BDC film coverage. This successful demonstration of sALD-grown compact continuous Cu-BDC SURMOF films is a paradigm change and provides a key advancement enabling a multitude of applications that require continuous and ultrathin coatings while maintaining tight film thickness specifications, which were previously unattainable with conventional solution-based growth methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Nadiri, Soheila
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Dong-Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weidler, Peter G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bochmann, Sebastian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Baumgart, Helmut
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bachmann, Julien
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Redel, Engelbert
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Chemistry of materials : a publication of the American Chemical Society
|d 1998
|g 34(2022), 22 vom: 22. Nov., Seite 9836-9843
|w (DE-627)NLM098194763
|x 0897-4756
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:22
|g day:22
|g month:11
|g pages:9836-9843
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.chemmater.2c01102
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 22
|b 22
|c 11
|h 9836-9843
|