Natural genetic variation in the HAIRS ABSENT (H) gene increases type-VI glandular trichomes in both wild and domesticated tomatoes

Copyright © 2022 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 280(2023) vom: 15. Jan., Seite 153859
1. Verfasser: Gasparini, Karla (VerfasserIn)
Weitere Verfasser: Gasparini, Joaquim, Therezan, Rodrigo, Vicente, Mateus Henrique, Sakamoto, Tetsu, Figueira, Antônio, Zsögön, Agustin, Peres, Lázaro E P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Domestication Insect resistance Mutants Solanum lycopersicum Solanum pimpinellifolium Zinc-finger transcription factor Plant Proteins
Beschreibung
Zusammenfassung:Copyright © 2022 Elsevier GmbH. All rights reserved.
Glandular trichomes produce and exude secondary metabolites, conferring insect resistance in many crop species. Whereas some of its wild relatives are insect-resistant, tomato (Solanum lycopersicum) is not. Identifying the genetic changes that altered trichome development and biochemistry during tomato domestication would contribute to breeding for insect resistance. A mutation in the HAIRS ABSENT (H) gene, which encodes a C2H2 zinc finger protein (ZFP8), leads to reduced trichome density. Several geographic accessions of S. pimpinellifolium, the wild ancestor of domesticated tomato, have glabrous organs that resemble the phenotype caused by h. Here, we investigated allelic diversity for H in tomato and S. pimpinellifolium accessions and their associated trichome phenotypes. We also evaluated how the developmental stage can affect trichome development in glabrous and non-glabrous plants. We found that glabrous accessions of S. pimpinellifolium have different ZFP8 nucleotide sequence changes, associated with altered trichome development and density. We also found that while the glabrous appearance of h mutants is caused by a lower density of long trichomes, the density of type-VI glandular trichomes is increased, particularly in the adult stages of plant development. These insights on the genetic control of trichome development may contribute to breeding for insect resistance in tomatoes and other crops
Beschreibung:Date Completed 13.01.2023
Date Revised 13.01.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2022.153859