PUFA-GAN : A Frequency-Aware Generative Adversarial Network for 3D Point Cloud Upsampling

We propose a generative adversarial network for point cloud upsampling, which can not only make the upsampled points evenly distributed on the underlying surface but also efficiently generate clean high frequency regions. The generator of our network includes a dynamic graph hierarchical residual ag...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 09., Seite 7389-7402
1. Verfasser: Liu, Hao (VerfasserIn)
Weitere Verfasser: Yuan, Hui, Hou, Junhui, Hamzaoui, Raouf, Gao, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM349308276
003 DE-627
005 20250304034856.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3222918  |2 doi 
028 5 2 |a pubmed25n1164.xml 
035 |a (DE-627)NLM349308276 
035 |a (NLM)36417728 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Hao  |e verfasserin  |4 aut 
245 1 0 |a PUFA-GAN  |b A Frequency-Aware Generative Adversarial Network for 3D Point Cloud Upsampling 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a generative adversarial network for point cloud upsampling, which can not only make the upsampled points evenly distributed on the underlying surface but also efficiently generate clean high frequency regions. The generator of our network includes a dynamic graph hierarchical residual aggregation unit and a hierarchical residual aggregation unit for point feature extraction and upsampling, respectively. The former extracts multiscale point-wise descriptive features, while the latter captures rich feature details with hierarchical residuals. To generate neat edges, our discriminator uses a graph filter to extract and retain high frequency points. The generated high resolution point cloud and corresponding high frequency points help the discriminator learn the global and high frequency properties of the point cloud. We also propose an identity distribution loss function to make sure that the upsampled points remain on the underlying surface of the input low resolution point cloud. To assess the regularity of the upsampled points in high frequency regions, we introduce two evaluation metrics. Objective and subjective results demonstrate that the visual quality of the upsampled point clouds generated by our method is better than that of the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Yuan, Hui  |e verfasserin  |4 aut 
700 1 |a Hou, Junhui  |e verfasserin  |4 aut 
700 1 |a Hamzaoui, Raouf  |e verfasserin  |4 aut 
700 1 |a Gao, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 09., Seite 7389-7402  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:09  |g pages:7389-7402 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3222918  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 09  |h 7389-7402